{"title":"Investigation of the tribological behaviors for 4H–SiC substrate under different lubrication conditions","authors":"Yuqi Zhou, Kezhong Xu, Weishan Lv, Yuhan Gao, Fulong Zhu","doi":"10.1016/j.wear.2024.205537","DOIUrl":null,"url":null,"abstract":"<div><p>Lubrication conditions are an important factor affecting both the machining efficiency and quality of 4H–SiC. To investigate the tribological behaviors under different lubrication conditions, a series of scratching experiments are conducted under different loads and environments. The X-ray photoelectron spectroscopy (XPS) surveys and atomistic simulations are used to explain the different tribological behaviors. Both experimental and simulation results show that liquid lubrication can significantly reduce the coefficient of friction (COF) and minimize structural damage. Compared to pure water, the H<sub>2</sub>O<sub>2</sub> solution is more conducive to the oxidation of SiC atoms and the modification of tribological behaviors. However, the difference in tribological behaviors between H<sub>2</sub>O<sub>2</sub> solution and pure water diminishes as the load increases. The XPS surveys show that the liquids lead to higher-order oxidized species of SiC atoms, such as Si<sub>4</sub>C<sub>4-x</sub>O<sub>2</sub> and Si-O<sub>x</sub>-C<sub>y</sub>, which are also observed in the simulation results. It is shown that the oxidized species can reduce the direct bonding between SiC and diamond indenter, which is an important reason for the lower COFs in the liquids. Since the liquids can reduce the direct bonding and mechanical interaction between 4H–SiC and diamond, the material removal rate is much lower under lubrication conditions.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"556 ","pages":"Article 205537"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003028","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lubrication conditions are an important factor affecting both the machining efficiency and quality of 4H–SiC. To investigate the tribological behaviors under different lubrication conditions, a series of scratching experiments are conducted under different loads and environments. The X-ray photoelectron spectroscopy (XPS) surveys and atomistic simulations are used to explain the different tribological behaviors. Both experimental and simulation results show that liquid lubrication can significantly reduce the coefficient of friction (COF) and minimize structural damage. Compared to pure water, the H2O2 solution is more conducive to the oxidation of SiC atoms and the modification of tribological behaviors. However, the difference in tribological behaviors between H2O2 solution and pure water diminishes as the load increases. The XPS surveys show that the liquids lead to higher-order oxidized species of SiC atoms, such as Si4C4-xO2 and Si-Ox-Cy, which are also observed in the simulation results. It is shown that the oxidized species can reduce the direct bonding between SiC and diamond indenter, which is an important reason for the lower COFs in the liquids. Since the liquids can reduce the direct bonding and mechanical interaction between 4H–SiC and diamond, the material removal rate is much lower under lubrication conditions.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.