Simulating study of atmospheric corrosion of Ni-advanced weathering steels in salinity environment: Formation and structure of magnetite rust particles prepared from FeCl2 solutions containing Ni2+ at neutral pH

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2024-08-10 DOI:10.1016/j.apt.2024.104605
{"title":"Simulating study of atmospheric corrosion of Ni-advanced weathering steels in salinity environment: Formation and structure of magnetite rust particles prepared from FeCl2 solutions containing Ni2+ at neutral pH","authors":"","doi":"10.1016/j.apt.2024.104605","DOIUrl":null,"url":null,"abstract":"<div><p>In order to elucidate the role of alloying Ni in Ni-advanced weathering steels on the formation of Fe<sub>3</sub>O<sub>4</sub> (magnetite) rust particles by atmospheric corrosion in salinity environment, aqueous FeCl<sub>2</sub> solutions containing various amounts of NiCl<sub>2</sub> were aged under bubbling the air at 50 °C for 24 h. The atomic ratio Ni/Fe of the solution was 0 – 0.2 and the solution pH before aging was about 7 over the whole Ni/Fe ratios. Aging for 3 h generated the Green rust(Cl<sup>-</sup>) ([Fe<sub>3</sub><sup>II</sup>Fe<sup>III</sup>(OH)<sub>8</sub>]<sup>+</sup>[Cl·<em>n</em>H<sub>2</sub>O]<sup>-</sup>) as a precursor of Fe<sub>3</sub>O<sub>4</sub>. Added Ni<sup>2+</sup> was incorporated into Green rust(Cl<sup>-</sup>) to form Ni<sup>2+</sup>-substituted Green rust(Cl<sup>-</sup>) ([Fe<sub>3-x</sub><sup>II</sup>Ni<sub>x</sub><sup>II</sup>Fe<sup>III</sup>(OH)<sub>8</sub>]<sup>+</sup>[Cl·<em>n</em>H<sub>2</sub>O]<sup>-</sup>]), resulting in enhancement of crystallization of this material. After aging for 24 h, the Ni<sup>2+</sup>-substituted Green rust(Cl<sup>-</sup>) formed at Ni/Fe = 0 – 0.08 was mainly transformed into spherical Fe<sub>3</sub>O<sub>4</sub> particles. The crystallization and particle growth of Fe<sub>3</sub>O<sub>4</sub> were promoted on elevating Ni/Fe ratio. At Ni/Fe ≥ 0.12, Fe<sub>3</sub>O<sub>4</sub> formation was suddenly impeded to generate rod-shaped α-FeOOH particles, of which the material possesses more stable crystal structure than Fe<sub>3</sub>O<sub>4</sub>. These results suggest that alloying Ni in Ni-advanced weathering steels accelerates the formation of stable rust layer composed of Fe<sub>3</sub>O<sub>4</sub> and/or α-FeOOH particles by atmospheric corrosion in salinity environment such as coastal and marine zones to contribute to the formation of the protective rust particle layer.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002814","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to elucidate the role of alloying Ni in Ni-advanced weathering steels on the formation of Fe3O4 (magnetite) rust particles by atmospheric corrosion in salinity environment, aqueous FeCl2 solutions containing various amounts of NiCl2 were aged under bubbling the air at 50 °C for 24 h. The atomic ratio Ni/Fe of the solution was 0 – 0.2 and the solution pH before aging was about 7 over the whole Ni/Fe ratios. Aging for 3 h generated the Green rust(Cl-) ([Fe3IIFeIII(OH)8]+[Cl·nH2O]-) as a precursor of Fe3O4. Added Ni2+ was incorporated into Green rust(Cl-) to form Ni2+-substituted Green rust(Cl-) ([Fe3-xIINixIIFeIII(OH)8]+[Cl·nH2O]-]), resulting in enhancement of crystallization of this material. After aging for 24 h, the Ni2+-substituted Green rust(Cl-) formed at Ni/Fe = 0 – 0.08 was mainly transformed into spherical Fe3O4 particles. The crystallization and particle growth of Fe3O4 were promoted on elevating Ni/Fe ratio. At Ni/Fe ≥ 0.12, Fe3O4 formation was suddenly impeded to generate rod-shaped α-FeOOH particles, of which the material possesses more stable crystal structure than Fe3O4. These results suggest that alloying Ni in Ni-advanced weathering steels accelerates the formation of stable rust layer composed of Fe3O4 and/or α-FeOOH particles by atmospheric corrosion in salinity environment such as coastal and marine zones to contribute to the formation of the protective rust particle layer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镍高级耐候钢在盐度环境中的大气腐蚀模拟研究:在中性pH值下由含Ni2+的FeCl2溶液制备的磁铁矿锈颗粒的形成和结构
为了阐明镍高级耐候钢中的合金镍对盐度环境下大气腐蚀形成 Fe3O4(磁铁矿)锈颗粒的作用,将含有不同量镍的 FeCl2 水溶液在 50 ℃ 的气泡下老化 24 h。老化 3 小时后生成的绿锈(Cl-)([Fe3IIFeIII(OH)8]+[Cl-nH2O]-)是 Fe3O4 的前体。加入的 Ni2+ 与绿锈(Cl-)结合,形成 Ni2+ 取代的绿锈(Cl-)([Fe3-xIINixIIFeIII(OH)8]+[Cl-nH2O]-]),从而提高了该材料的结晶度。老化 24 小时后,Ni/Fe = 0 - 0.08 时形成的 Ni2+ 取代绿锈(Cl-)主要转化为球形 Fe3O4 颗粒。镍/铁比率升高会促进 Fe3O4 的结晶和颗粒生长。当 Ni/Fe ≥ 0.12 时,Fe3O4 的形成突然受阻,生成棒状的 α-FeOOH 颗粒,这种材料具有比 Fe3O4 更稳定的晶体结构。这些结果表明,在沿海和海洋区域等盐度环境中,镍高级耐候钢中的合金化镍可加速形成由 Fe3O4 和/或 α-FeOOH 颗粒组成的稳定锈层,从而促进保护性锈粒层的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Optimization of conventional-zeolite-synthesis from waste pumice for water adsorption Validation of DEM simulations for a drum-type agitation mill using particle velocities measured by 3D PTV Inside Front Cover (Aims & Scope, Editors) Full title (Editorial Board Members) Reactive molecular dynamics analysis of alumina nano-powders under warm compaction process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1