Addressing antecedents’ importance of open innovation between industry and universities: A neural network-based importance-performance analysis with a fuzzy approach
{"title":"Addressing antecedents’ importance of open innovation between industry and universities: A neural network-based importance-performance analysis with a fuzzy approach","authors":"","doi":"10.1016/j.aej.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>Determining the importance of major antecedents of open innovation between such distinct partners as industry and universities influences the decision-making regarding resources and effort allocation to their improvement, according to the strategic objectives of the firms. For this purpose, the present paper proposes an approach for conducting their importance-performance analysis based on fuzzy set theory and neural networks. Considering a hierarchical component model that integrates the components of the major antecedents, this study advances a research framework that first involves the operationalization of the collected data as fuzzy numbers. Then, the SHapley Additive exPlanation-based method estimates the derived importance of each component in the hierarchical component model using an optimal two-layers back-propagation network. Finally, a nine quadrants division of the importance-performance analysis developed on the basis of relevance and determinance measures of the analyzed antecedent components, delineates the prioritization of their potential improvements. A case study aims to demonstrate the developed research framework, illustrating its effectiveness and flexibility in decision-making related to the improvement of such antecedents.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824008949/pdfft?md5=3677f1ac06fb6e57d42c527ad2289398&pid=1-s2.0-S1110016824008949-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824008949","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the importance of major antecedents of open innovation between such distinct partners as industry and universities influences the decision-making regarding resources and effort allocation to their improvement, according to the strategic objectives of the firms. For this purpose, the present paper proposes an approach for conducting their importance-performance analysis based on fuzzy set theory and neural networks. Considering a hierarchical component model that integrates the components of the major antecedents, this study advances a research framework that first involves the operationalization of the collected data as fuzzy numbers. Then, the SHapley Additive exPlanation-based method estimates the derived importance of each component in the hierarchical component model using an optimal two-layers back-propagation network. Finally, a nine quadrants division of the importance-performance analysis developed on the basis of relevance and determinance measures of the analyzed antecedent components, delineates the prioritization of their potential improvements. A case study aims to demonstrate the developed research framework, illustrating its effectiveness and flexibility in decision-making related to the improvement of such antecedents.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering