Analysis of the influence of passive joints on kinematic calibration of parallel manipulators based on complete error model

Xin Yuan , Lingyu Kong , Zhuang Zhang , Guanyu Huang , Anhuan Xie , Genliang Chen
{"title":"Analysis of the influence of passive joints on kinematic calibration of parallel manipulators based on complete error model","authors":"Xin Yuan ,&nbsp;Lingyu Kong ,&nbsp;Zhuang Zhang ,&nbsp;Guanyu Huang ,&nbsp;Anhuan Xie ,&nbsp;Genliang Chen","doi":"10.1016/j.precisioneng.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>A complete kinematic error model that contains all potential error sources, is one of the fundamentals to ensure the best result of kinematic calibration. In the case of parallel manipulators, the complete error model includes items of passive joint motions. These motions usually cannot be accurately observed during the identification process but can be derived through kinematic analysis. However, due to kinematic errors, the obtained passive joint motions deviate from their actual values, causing motion errors of passive joints. In other words, the passive joints introduce input errors to the error model, which are of the same order of magnitude as kinematic errors and much larger than other measurement and random noises. This issue can significantly affect the stability and accuracy of parameter identification, but it has not been clearly recognized in the literature. To address this problem, this paper systematically analyzes the influence of passive joints’ motion errors on the kinematic calibration of parallel manipulators. It is found that when the complete error model including the passive joints’ motion errors is used for kinematic calibration of parallel manipulators, the variance of kinematic error parameters solved by the least squares (LS) method greatly increases, leading to iterative divergence even when the identification matrix is column full rank. To improve the stability and accuracy of parameter identification, this study employs the total least squares (TLS) method, which is a dedicated approach for handling input errors, in the identification process. Numerical simulations and experiments of kinematic calibration are conducted on several parallel manipulators. The results validate the correctness and effectiveness of the analysis of the influence of passive joints’ motion errors on the kinematic calibration of parallel manipulators. Furthermore, the results indicate that the TLS method can efficiently and accurately accomplish the identification of kinematic parameters.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"90 ","pages":"Pages 56-70"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924001776","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

A complete kinematic error model that contains all potential error sources, is one of the fundamentals to ensure the best result of kinematic calibration. In the case of parallel manipulators, the complete error model includes items of passive joint motions. These motions usually cannot be accurately observed during the identification process but can be derived through kinematic analysis. However, due to kinematic errors, the obtained passive joint motions deviate from their actual values, causing motion errors of passive joints. In other words, the passive joints introduce input errors to the error model, which are of the same order of magnitude as kinematic errors and much larger than other measurement and random noises. This issue can significantly affect the stability and accuracy of parameter identification, but it has not been clearly recognized in the literature. To address this problem, this paper systematically analyzes the influence of passive joints’ motion errors on the kinematic calibration of parallel manipulators. It is found that when the complete error model including the passive joints’ motion errors is used for kinematic calibration of parallel manipulators, the variance of kinematic error parameters solved by the least squares (LS) method greatly increases, leading to iterative divergence even when the identification matrix is column full rank. To improve the stability and accuracy of parameter identification, this study employs the total least squares (TLS) method, which is a dedicated approach for handling input errors, in the identification process. Numerical simulations and experiments of kinematic calibration are conducted on several parallel manipulators. The results validate the correctness and effectiveness of the analysis of the influence of passive joints’ motion errors on the kinematic calibration of parallel manipulators. Furthermore, the results indicate that the TLS method can efficiently and accurately accomplish the identification of kinematic parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于完全误差模型的被动关节对平行机械手运动学校准的影响分析
包含所有潜在误差源的完整运动学误差模型是确保最佳运动学校准结果的基本要素之一。就平行机械手而言,完整的误差模型包括被动关节运动项目。这些运动通常无法在识别过程中准确观测到,但可以通过运动学分析得出。然而,由于运动学误差,获得的被动关节运动会偏离其实际值,从而造成被动关节的运动误差。换句话说,被动关节为误差模型引入了输入误差,其数量级与运动学误差相同,远大于其他测量和随机噪声。这一问题会严重影响参数识别的稳定性和准确性,但文献中尚未明确认识到这一点。针对这一问题,本文系统分析了被动关节运动误差对并联机械手运动学标定的影响。研究发现,当采用包括被动关节运动误差在内的完整误差模型对并联机械手进行运动学标定时,采用最小二乘法(LS)求解的运动学误差参数方差会大大增加,即使在识别矩阵为列全秩的情况下,也会导致迭代发散。为了提高参数识别的稳定性和准确性,本研究在识别过程中采用了专门处理输入误差的全最小二乘法(TLS)。在几个并联机械手上进行了运动校准的数值模拟和实验。结果验证了被动关节运动误差对平行机械手运动校准影响分析的正确性和有效性。此外,结果表明 TLS 方法可以高效、准确地完成运动学参数的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
期刊最新文献
Distance deviation sensitivity on null test of convex hyperboloid mirrors with large relative aperture Stiffness model for pneumatic spring with air-diaphragm coupling effect Rapid non-contact measurement of distance between two pins of flexspline in harmonic reducers based on standard/actual parts comparison Based on domain adversarial neural network with multiple loss collaborative optimization for milling tool wear state monitoring under different machining conditions Fabrication of angle-gradient echelle grating on metallic glass using shaped vibration cutting with time-varying trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1