A 9-V Wireless Power Receiver IC With 74.2% Power Conversion Efficiency and Integrated Bidirectional Telemetries for Implantable Neurostimulation Systems in Standard CMOS
{"title":"A 9-V Wireless Power Receiver IC With 74.2% Power Conversion Efficiency and Integrated Bidirectional Telemetries for Implantable Neurostimulation Systems in Standard CMOS","authors":"Yi Ding;Tianyi Li;Xinqin Guo;Hongming Lyu","doi":"10.1109/LMWT.2024.3411572","DOIUrl":null,"url":null,"abstract":"This letter presents a 9-V wireless power and data receiver IC in a standard CMOS process technology. A transistor-stacking scheme is employed for accommodating active circuits in a high-voltage domain that exceeds the transistor’s voltage tolerance. The IC successfully generates 9-V through a 21-stage cross-coupled rectifier and regulated 6- and 3-V supplies with low-dropout regulators (LDOs) delivering a maximum power of 27 mW with a peak power conversion efficiency (PCE) of 74.2%. Forward telemetry at 200 kbit/s and backward telemetry at 10 kbit/s are achieved based on on-off keying (OOK) and load-shift keying (LSK) modulation schemes, respectively, which negligibly affect the generated voltage domains. The IC serves as a wireless power solution for batteryless and high-voltage-required medical implants.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 8","pages":"1051-1054"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10570322/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a 9-V wireless power and data receiver IC in a standard CMOS process technology. A transistor-stacking scheme is employed for accommodating active circuits in a high-voltage domain that exceeds the transistor’s voltage tolerance. The IC successfully generates 9-V through a 21-stage cross-coupled rectifier and regulated 6- and 3-V supplies with low-dropout regulators (LDOs) delivering a maximum power of 27 mW with a peak power conversion efficiency (PCE) of 74.2%. Forward telemetry at 200 kbit/s and backward telemetry at 10 kbit/s are achieved based on on-off keying (OOK) and load-shift keying (LSK) modulation schemes, respectively, which negligibly affect the generated voltage domains. The IC serves as a wireless power solution for batteryless and high-voltage-required medical implants.