A Residual Selectable Modeling Method Based on Deep Neural Network for Power Amplifiers With Multiple States

0 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE microwave and wireless technology letters Pub Date : 2024-07-08 DOI:10.1109/LMWT.2024.3420398
Zongyu Chang;Xin Hu;Boyan Li;Quanhao Yao;Yurong Yao;Weidong Wang;Fadhel M. Ghannouchi
{"title":"A Residual Selectable Modeling Method Based on Deep Neural Network for Power Amplifiers With Multiple States","authors":"Zongyu Chang;Xin Hu;Boyan Li;Quanhao Yao;Yurong Yao;Weidong Wang;Fadhel M. Ghannouchi","doi":"10.1109/LMWT.2024.3420398","DOIUrl":null,"url":null,"abstract":"A traditional power amplifier (PA) behavioral model typically represents one specific operating state of the PA. As the number of states of PA increases, the depth of the behavioral model based on the deep neural network (DNN) deepens. However, the deepening of the DNN may result in decreased model accuracy. To solve this issue, this letter proposes a residual selectable modeling method to obtain the residual DNN (RDNN), which can be used to build the multistate PA behavioral model. Experimental results show that the multistate PA model constructed by the proposed method can improve the accuracy of the DNN-based PA model. Also, the model accuracy does not decrease with the deepening of DNNs.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 8","pages":"1043-1046"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10587151/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A traditional power amplifier (PA) behavioral model typically represents one specific operating state of the PA. As the number of states of PA increases, the depth of the behavioral model based on the deep neural network (DNN) deepens. However, the deepening of the DNN may result in decreased model accuracy. To solve this issue, this letter proposes a residual selectable modeling method to obtain the residual DNN (RDNN), which can be used to build the multistate PA behavioral model. Experimental results show that the multistate PA model constructed by the proposed method can improve the accuracy of the DNN-based PA model. Also, the model accuracy does not decrease with the deepening of DNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的多状态功率放大器残差可选建模方法
传统的功率放大器(PA)行为模型通常代表功率放大器的一种特定工作状态。随着功率放大器状态数量的增加,基于深度神经网络(DNN)的行为模型的深度也会加深。然而,DNN 的加深可能会导致模型精度下降。为了解决这个问题,本文提出了一种残差可选建模方法,以获得残差 DNN(RDNN),并用它来建立多态 PA 行为模型。实验结果表明,用所提出的方法构建的多态 PA 模型可以提高基于 DNN 的 PA 模型的精度。而且,模型的准确性不会随着 DNN 的加深而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Open Access Publishing IEEE Microwave and Wireless Technology Letters publication IEEE Microwave and Wireless Technology Letters Information for Authors TechRxiv: Share Your Preprint Research with the World
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1