Mehmet Önder Efe;Burak Kürkçü;Coşku Kasnakoǧlu;Zaharuddin Mohamed;Zhijie Liu
{"title":"Switched Neural Networks for Simultaneous Learning of Multiple Functions","authors":"Mehmet Önder Efe;Burak Kürkçü;Coşku Kasnakoǧlu;Zaharuddin Mohamed;Zhijie Liu","doi":"10.1109/TETCI.2024.3369981","DOIUrl":null,"url":null,"abstract":"This paper introduces the notion of switched neural networks for learning multiple functions under different switching configurations. The neural network structure has adjustable parameters and for each function the state of the parameter vector is determined by a mask vector, 1/0 for active/inactive or +1/-1 for plain/inverted. The optimization problem is to schedule the switching strategy (mask vector) required for each function together with the best parameter vector (weights/biases) minimizing the loss function. This requires a procedure that optimizes a vector containing real and binary values simultaneously to discover commonalities among various functions. Our studies show that a small sized neural network structure with an appropriate switching regime is able to learn multiple functions successfully. During the tests focusing on classification, we considered 2-variable binary functions and all 16 combinations have been chosen as the functions. The regression tests consider four functions of two variables. Our studies showed that simple NN structures are capable of storing multiple information via appropriate switching.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"3095-3104"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10464337/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces the notion of switched neural networks for learning multiple functions under different switching configurations. The neural network structure has adjustable parameters and for each function the state of the parameter vector is determined by a mask vector, 1/0 for active/inactive or +1/-1 for plain/inverted. The optimization problem is to schedule the switching strategy (mask vector) required for each function together with the best parameter vector (weights/biases) minimizing the loss function. This requires a procedure that optimizes a vector containing real and binary values simultaneously to discover commonalities among various functions. Our studies show that a small sized neural network structure with an appropriate switching regime is able to learn multiple functions successfully. During the tests focusing on classification, we considered 2-variable binary functions and all 16 combinations have been chosen as the functions. The regression tests consider four functions of two variables. Our studies showed that simple NN structures are capable of storing multiple information via appropriate switching.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.