Enhancing Wheel Vertical Displacement Estimation in Road Vehicles Through Integration of Model-Based Estimator With Artificial Intelligence

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-07-19 DOI:10.1109/OJVT.2024.3431449
Raffaele Marotta;Sebastiaan van Aalst;Kylian Praet;Miguel Dhaens;Valentin Ivanov;Salvatore Strano;Mario Terzo;Ciro Tordela
{"title":"Enhancing Wheel Vertical Displacement Estimation in Road Vehicles Through Integration of Model-Based Estimator With Artificial Intelligence","authors":"Raffaele Marotta;Sebastiaan van Aalst;Kylian Praet;Miguel Dhaens;Valentin Ivanov;Salvatore Strano;Mario Terzo;Ciro Tordela","doi":"10.1109/OJVT.2024.3431449","DOIUrl":null,"url":null,"abstract":"In the automotive industry, the accurate estimation of wheel displacements is crucial for optimizing vehicle suspension systems. Traditional model-based approaches often face challenges in accurately predicting these displacements due to the complex dynamics of the road-vehicle interaction. To address this limitation, this study, conducted in the frame of the OWHEEL project, proposes the integration of a multi-output neural network capable of compensating for estimation errors inherent in model-based approaches, specifically those arising from road inputs. Leveraging only vertical acceleration measurements, the neural network operates in parallel with the model-based estimator, enhancing the overall accuracy of displacement estimation. Experimental validation using a sports vehicle demonstrates the efficacy of the proposed methodology, showcasing its ability to improve estimation accuracy beyond the capabilities of the model-based approach alone.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"5 ","pages":"979-989"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10605031/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the automotive industry, the accurate estimation of wheel displacements is crucial for optimizing vehicle suspension systems. Traditional model-based approaches often face challenges in accurately predicting these displacements due to the complex dynamics of the road-vehicle interaction. To address this limitation, this study, conducted in the frame of the OWHEEL project, proposes the integration of a multi-output neural network capable of compensating for estimation errors inherent in model-based approaches, specifically those arising from road inputs. Leveraging only vertical acceleration measurements, the neural network operates in parallel with the model-based estimator, enhancing the overall accuracy of displacement estimation. Experimental validation using a sports vehicle demonstrates the efficacy of the proposed methodology, showcasing its ability to improve estimation accuracy beyond the capabilities of the model-based approach alone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将基于模型的估算器与人工智能相结合,增强道路车辆车轮垂直位移估算能力
在汽车行业,车轮位移的精确估算对于优化车辆悬挂系统至关重要。由于道路与车辆相互作用的动态十分复杂,传统的基于模型的方法在准确预测这些位移方面往往面临挑战。为了解决这一局限性,本研究在 OWHEEL 项目框架内进行,提出集成一个多输出神经网络,该网络能够补偿基于模型的方法中固有的估计误差,特别是由道路输入引起的误差。神经网络仅利用垂直加速度测量值,与基于模型的估算器并行运行,从而提高了位移估算的整体准确性。使用跑车进行的实验验证证明了所提方法的有效性,展示了其提高估算精度的能力,超越了基于模型方法的单独能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Efficient Modeling of Interest Forwarding in Information Centric Vehicular Networks Multi-Agent Deep Reinforcement Learning Based Optimizing Joint 3D Trajectories and Phase Shifts in RIS-Assisted UAV-Enabled Wireless Communications Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1