Cryptocurrency Price Bubble Detection Using Log-Periodic Power Law Model and Wavelet Analysis

IF 5.2 3区 管理学 Q1 BUSINESS IEEE Transactions on Engineering Management Pub Date : 2024-07-17 DOI:10.1109/TEM.2024.3427647
Junhuan Zhang;Haodong Wang;Jing Chen;Anqi Liu
{"title":"Cryptocurrency Price Bubble Detection Using Log-Periodic Power Law Model and Wavelet Analysis","authors":"Junhuan Zhang;Haodong Wang;Jing Chen;Anqi Liu","doi":"10.1109/TEM.2024.3427647","DOIUrl":null,"url":null,"abstract":"In this article, we establish a method to detect and formulate price bubbles in the cryptocurrency markets. This method identifies abnormal crashes through violations of the exponential decaying property. Confirmations of bubble bursts within these anomalies are obtained through wavelet analysis. By decomposing the cryptocurrency price into the high-frequency and low-frequency factors, we distinguish the price regimes versus the periods with bubbles and crashes in both time and frequency domains. In addition, we apply the log-periodic power law model to fit the bubble formation. In the analysis of eight cryptocurrencies—Bitcoin, Ethereum, Litecoin, Antshares, Ethereum Classic, Dash, Monero, and OmiseGO—from 15 May 2018 to 28 November 2022, we identify 24 bubbles. Some of them exhibit a significant and strong exponential growth pattern.","PeriodicalId":55009,"journal":{"name":"IEEE Transactions on Engineering Management","volume":"71 ","pages":"11796-11812"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Engineering Management","FirstCategoryId":"91","ListUrlMain":"https://ieeexplore.ieee.org/document/10601303/","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we establish a method to detect and formulate price bubbles in the cryptocurrency markets. This method identifies abnormal crashes through violations of the exponential decaying property. Confirmations of bubble bursts within these anomalies are obtained through wavelet analysis. By decomposing the cryptocurrency price into the high-frequency and low-frequency factors, we distinguish the price regimes versus the periods with bubbles and crashes in both time and frequency domains. In addition, we apply the log-periodic power law model to fit the bubble formation. In the analysis of eight cryptocurrencies—Bitcoin, Ethereum, Litecoin, Antshares, Ethereum Classic, Dash, Monero, and OmiseGO—from 15 May 2018 to 28 November 2022, we identify 24 bubbles. Some of them exhibit a significant and strong exponential growth pattern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用对数周期幂律模型和小波分析检测加密货币价格泡沫
在本文中,我们建立了一种检测和制定加密货币市场价格泡沫的方法。该方法通过违反指数衰减特性来识别异常崩溃。通过小波分析,在这些异常现象中获得泡沫破裂的确认。通过将加密货币价格分解为高频因素和低频因素,我们在时域和频域上区分了价格体系与泡沫和崩溃时期。此外,我们还应用对数周期幂律模型来拟合泡沫的形成。在对 2018 年 5 月 15 日至 2022 年 11 月 28 日期间的八种加密货币--比特币、以太坊、莱特币、Antshares、以太坊经典版、Dash、Monero 和 OmiseGO--的分析中,我们发现了 24 个泡沫。其中一些泡沫呈现出显著而强劲的指数增长模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Engineering Management
IEEE Transactions on Engineering Management 管理科学-工程:工业
CiteScore
10.30
自引率
19.00%
发文量
604
审稿时长
5.3 months
期刊介绍: Management of technical functions such as research, development, and engineering in industry, government, university, and other settings. Emphasis is on studies carried on within an organization to help in decision making or policy formation for RD&E.
期刊最新文献
Does Digital Technologies Deployment Promote Environmental Performance? Evidence From China Toward a Framework of Innovation Ecosystem Performance: A Case Study How Does Firms’ Artificial Intelligence Adoption Affect Different Stakeholders? A Systematic Review and the AIMS Framework Front Cover A Predictive Analytics Framework for Policy-Driven Benchmarking and Promotion of Innovation Productivity in U.S. Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1