Data Efficient Deep Reinforcement Learning With Action-Ranked Temporal Difference Learning

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-03-11 DOI:10.1109/TETCI.2024.3369641
Qi Liu;Yanjie Li;Yuecheng Liu;Ke Lin;Jianqi Gao;Yunjiang Lou
{"title":"Data Efficient Deep Reinforcement Learning With Action-Ranked Temporal Difference Learning","authors":"Qi Liu;Yanjie Li;Yuecheng Liu;Ke Lin;Jianqi Gao;Yunjiang Lou","doi":"10.1109/TETCI.2024.3369641","DOIUrl":null,"url":null,"abstract":"In value-based deep reinforcement learning (RL), value function approximation errors lead to suboptimal policies. Temporal difference (TD) learning is one of the most important methodologies to approximate state-action (\n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n) value function. In TD learning, it is critical to estimate \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n values of greedy actions more accurately because a more accurate target \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n value enhances the estimation accuracy of \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n value. To improve the estimation accuracy of \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n value, we propose an action-ranked TD learning method to enhance the performance of deep RL by weighting each TD error according to the rank of its corresponding state-action pair's value among all the \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n values on a state. The proposed method can provide more accurate target values for TD learning, making the estimation of the \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n value more accurate. We apply the proposed method to a representative value-based deep RL algorithm, and results show that the proposed method outperforms baselines on 31 out of 40 Atari games. Furthermore, we extend the proposed method to multi-agent deep RL. To adaptively determine the hyperparameter in action-ranked TD learning, we propose a meta action-ranked TD learning. A series of experiments quantitatively verify that our methods outperform baselines on Atari games, StarCraft-II, and Grid World environments.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"2949-2961"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10466624/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In value-based deep reinforcement learning (RL), value function approximation errors lead to suboptimal policies. Temporal difference (TD) learning is one of the most important methodologies to approximate state-action ( $Q$ ) value function. In TD learning, it is critical to estimate $Q$ values of greedy actions more accurately because a more accurate target $Q$ value enhances the estimation accuracy of $Q$ value. To improve the estimation accuracy of $Q$ value, we propose an action-ranked TD learning method to enhance the performance of deep RL by weighting each TD error according to the rank of its corresponding state-action pair's value among all the $Q$ values on a state. The proposed method can provide more accurate target values for TD learning, making the estimation of the $Q$ value more accurate. We apply the proposed method to a representative value-based deep RL algorithm, and results show that the proposed method outperforms baselines on 31 out of 40 Atari games. Furthermore, we extend the proposed method to multi-agent deep RL. To adaptively determine the hyperparameter in action-ranked TD learning, we propose a meta action-ranked TD learning. A series of experiments quantitatively verify that our methods outperform baselines on Atari games, StarCraft-II, and Grid World environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用行动排序时差学习实现数据高效深度强化学习
在基于价值的深度强化学习(RL)中,价值函数近似错误会导致次优策略。时差(TD)学习是近似状态-行动($Q$)价值函数的最重要方法之一。在 TD 学习中,更准确地估计贪婪行动的 $Q$ 值至关重要,因为更准确的目标 $Q$ 值会提高 $Q$ 值的估计精度。为了提高 Q$ 值的估计精度,我们提出了一种行动排序 TD 学习方法,根据每个 TD 误差对应的状态-行动对的 Q$ 值在一个状态上所有 Q$ 值中的排序来加权,从而提高深度 RL 的性能。所提出的方法可以为 TD 学习提供更准确的目标值,从而使 Q$ 值的估计更加准确。我们将所提出的方法应用于一种具有代表性的基于值的深度 RL 算法,结果表明,在 40 个 Atari 游戏中,所提出的方法在 31 个游戏中的表现优于基线方法。此外,我们还将提出的方法扩展到了多代理深度 RL。为了自适应地确定行动排序 TD 学习中的超参数,我们提出了元行动排序 TD 学习。一系列实验定量验证了我们的方法在 Atari 游戏、《星际争霸 II》和网格世界环境中的表现优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors IEEE Computational Intelligence Society Information Decentralized Triggering and Event-Based Integral Reinforcement Learning for Multiplayer Differential Game Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1