Tudor Jianu;Baoru Huang;Minh Nhat Vu;Mohamed E. M. K. Abdelaziz;Sebastiano Fichera;Chun-Yi Lee;Pierre Berthet-Rayne;Ferdinando Rodriguez y Baena;Anh Nguyen
{"title":"CathSim: An Open-Source Simulator for Endovascular Intervention","authors":"Tudor Jianu;Baoru Huang;Minh Nhat Vu;Mohamed E. M. K. Abdelaziz;Sebastiano Fichera;Chun-Yi Lee;Pierre Berthet-Rayne;Ferdinando Rodriguez y Baena;Anh Nguyen","doi":"10.1109/TMRB.2024.3421256","DOIUrl":null,"url":null,"abstract":"Autonomous robots in endovascular operations have the potential to navigate circulatory systems safely and reliably while decreasing the susceptibility to human errors. However, there are numerous challenges involved with the process of training such robots, such as long training duration and safety issues arising from the interaction between the catheter and the aorta. Recently, endovascular simulators have been employed for medical training but generally do not conform to autonomous catheterization due to the lack of standardization and RL framework compliance. Furthermore, most current simulators are closed-source, which hinders the collaborative development of safe and reliable autonomous systems through shared learning and community-driven enhancements. In this work, we introduce CathSim, an open-source simulation environment that accelerates the development of machine learning algorithms for autonomous endovascular navigation. We first simulate the high-fidelity catheter and aorta with a state-of-the-art endovascular robot. We then provide the capability of real-time force sensing between the catheter and the aorta in simulation. Furthermore, we validate our simulator by conducting two different catheterization tasks using two popular reinforcement learning algorithms, namely SAC and PPO. The experimental results show that our open-source simulator can mimic the behavior of real-world endovascular robots and facilitate the development of different autonomous catheterization tasks. Our simulator is publicly available at \n<uri>https://github.com/airvlab/cathsim</uri>\n.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 3","pages":"971-979"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10587130/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous robots in endovascular operations have the potential to navigate circulatory systems safely and reliably while decreasing the susceptibility to human errors. However, there are numerous challenges involved with the process of training such robots, such as long training duration and safety issues arising from the interaction between the catheter and the aorta. Recently, endovascular simulators have been employed for medical training but generally do not conform to autonomous catheterization due to the lack of standardization and RL framework compliance. Furthermore, most current simulators are closed-source, which hinders the collaborative development of safe and reliable autonomous systems through shared learning and community-driven enhancements. In this work, we introduce CathSim, an open-source simulation environment that accelerates the development of machine learning algorithms for autonomous endovascular navigation. We first simulate the high-fidelity catheter and aorta with a state-of-the-art endovascular robot. We then provide the capability of real-time force sensing between the catheter and the aorta in simulation. Furthermore, we validate our simulator by conducting two different catheterization tasks using two popular reinforcement learning algorithms, namely SAC and PPO. The experimental results show that our open-source simulator can mimic the behavior of real-world endovascular robots and facilitate the development of different autonomous catheterization tasks. Our simulator is publicly available at
https://github.com/airvlab/cathsim
.