Pub Date : 2025-02-28DOI: 10.1109/TMRB.2025.3532156
Leonardo Cappello;Daniele Guarnera
{"title":"Guest Editorial BioRob2024","authors":"Leonardo Cappello;Daniele Guarnera","doi":"10.1109/TMRB.2025.3532156","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3532156","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"3-5"},"PeriodicalIF":3.4,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908099","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28DOI: 10.1109/TMRB.2025.3539974
{"title":"IEEE Transactions on Medical Robotics and Bionics Information for Authors","authors":"","doi":"10.1109/TMRB.2025.3539974","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3539974","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"C4-C4"},"PeriodicalIF":3.4,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28DOI: 10.1109/TMRB.2025.3539970
{"title":"IEEE Transactions on Medical Robotics and Bionics Publication Information","authors":"","doi":"10.1109/TMRB.2025.3539970","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3539970","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"C2-C2"},"PeriodicalIF":3.4,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28DOI: 10.1109/TMRB.2025.3539972
{"title":"IEEE Transactions on Medical Robotics and Bionics Society Information","authors":"","doi":"10.1109/TMRB.2025.3539972","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3539972","url":null,"abstract":"","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"C3-C3"},"PeriodicalIF":3.4,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1109/TMRB.2025.3531015
Mahshad Berjis;Marie-Eve LeBel;Daniel J. Lizotte;Ana Luisa Trejos
Patients with upper-limb injuries often use compensatory movements to overcome limitations in range of motion, which can lead to additional injury if not corrected early within a rehabilitation program. Although automatic detection of compensatory movements has been studied in the literature, the impact of sensor locations on detection performance has not been previously explored. To investigate how sensor locations affect the ability to automatically detect compensatory movements of the upper limb, sixteen surface electromyography sensors were placed on key muscles involved in these movements. Thirty-one healthy participants performed a door-opening task in three conditions: without elbow restrictions (healthy pattern), and two conditions with limited elbow range of motion (60° of flexion-full flexion and 30°–80° of flexion to simulate injury). Statistical analyses identified sensor locations with significant differences between the conditions. Support vector machine classifiers demonstrated notably higher performance using data from six sensors on the middle deltoid, the upper trapezius, the latissimus dorsi, the external obliques, and the erector abdominis. This study highlights the importance of thoughtful muscle selection for effective automatic detection and correction of upper-limb compensatory movements, which is crucial for a wearable mechatronic device to be effective in improving the movement quality of patients.
{"title":"Selecting Muscles for Detection of Upper-Limb Compensatory Movements Using s-EMG Sensors","authors":"Mahshad Berjis;Marie-Eve LeBel;Daniel J. Lizotte;Ana Luisa Trejos","doi":"10.1109/TMRB.2025.3531015","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3531015","url":null,"abstract":"Patients with upper-limb injuries often use compensatory movements to overcome limitations in range of motion, which can lead to additional injury if not corrected early within a rehabilitation program. Although automatic detection of compensatory movements has been studied in the literature, the impact of sensor locations on detection performance has not been previously explored. To investigate how sensor locations affect the ability to automatically detect compensatory movements of the upper limb, sixteen surface electromyography sensors were placed on key muscles involved in these movements. Thirty-one healthy participants performed a door-opening task in three conditions: without elbow restrictions (healthy pattern), and two conditions with limited elbow range of motion (60° of flexion-full flexion and 30°–80° of flexion to simulate injury). Statistical analyses identified sensor locations with significant differences between the conditions. Support vector machine classifiers demonstrated notably higher performance using data from six sensors on the middle deltoid, the upper trapezius, the latissimus dorsi, the external obliques, and the erector abdominis. This study highlights the importance of thoughtful muscle selection for effective automatic detection and correction of upper-limb compensatory movements, which is crucial for a wearable mechatronic device to be effective in improving the movement quality of patients.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"164-170"},"PeriodicalIF":3.4,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1109/TMRB.2025.3531006
A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan
In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.
{"title":"The Study of Dexterous Hand Manipulation: A Synergy-Based Complexity Index","authors":"A. Michael West;Federico Tessari;Margaret Wang;Neville Hogan","doi":"10.1109/TMRB.2025.3531006","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3531006","url":null,"abstract":"In this work we tackle the question of how to analyze and objectively quantify the complexity of a manipulation task. The study investigates the kinematic behavior of the hand joints in three different manipulation tasks of growing complexity: reaching-to-grasp, tool use and piano playing. The collected data were processed to extract the kinematic synergies of the hand by means of singular value decomposition. A novel, unbiased metric to determine hand manipulation complexity was based on the cumulative variance accounted for. This Variance-Accounted-For Complexity Index (VAF-CI) reliably distinguished between different manipulation tasks. Moreover, an unsupervised learning method (k-means clustering) was able to use the index to accurately identify the 3 distinct manipulation tasks. These results may be leveraged to improve the control of biomimetic dexterous robots during manipulation tasks.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"156-163"},"PeriodicalIF":3.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1109/TMRB.2025.3527718
Min Sung Kim;Chan Young Park;Doo Yong Lee
The pressure-driven mechanisms for steerable guidewires and catheters are difficult to fabricate when miniaturized to submillimeter-scale. Micro bubbles resulting from molding or surface irregularities due to surface tension can affect the actuation performance as the outer diameter of the pressure-driven actuator decreases to the submillimeter-scale. This paper presents a novel fabrication method to manufacture pressure-driven actuators of submillimeter-scale. The proposed fabrication method utilizes magnetorheological (MR) elastomer and magnetic field to determine the geometric dimensions of the actuator with micro-scale precision. An actuator of the diameter of 0.7 mm and the eccentricity of $80~mu $ m is designed and fabricated with absolute errors of $12~mu $ m and $3~mu $ m, respectively. The steering performance of the fabricated micro actuator is tested through experiments. The actuator can achieve a sharp bending angle of 124 degrees with a length of 5.41 mm, by optimizing the eccentricity through the finite-element analysis.
{"title":"Magnetorheological-Elastomer-Based and Hydraulically Steerable Actuator for Micro Guidewire and Catheter","authors":"Min Sung Kim;Chan Young Park;Doo Yong Lee","doi":"10.1109/TMRB.2025.3527718","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3527718","url":null,"abstract":"The pressure-driven mechanisms for steerable guidewires and catheters are difficult to fabricate when miniaturized to submillimeter-scale. Micro bubbles resulting from molding or surface irregularities due to surface tension can affect the actuation performance as the outer diameter of the pressure-driven actuator decreases to the submillimeter-scale. This paper presents a novel fabrication method to manufacture pressure-driven actuators of submillimeter-scale. The proposed fabrication method utilizes magnetorheological (MR) elastomer and magnetic field to determine the geometric dimensions of the actuator with micro-scale precision. An actuator of the diameter of 0.7 mm and the eccentricity of <inline-formula> <tex-math>$80~mu $ </tex-math></inline-formula>m is designed and fabricated with absolute errors of <inline-formula> <tex-math>$12~mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$3~mu $ </tex-math></inline-formula>m, respectively. The steering performance of the fabricated micro actuator is tested through experiments. The actuator can achieve a sharp bending angle of 124 degrees with a length of 5.41 mm, by optimizing the eccentricity through the finite-element analysis.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"77-84"},"PeriodicalIF":3.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1109/TMRB.2025.3527708
Lorenzo Campioni;Gianluca Dimonte;Giorgia Sciarrone;Gabriele Righi;Conor Walsh;Marta Gandolla;Giulio Del Popolo;Silvestro Micera;Tommaso Proietti
Spinal cord injuries (SCI) often lead to upper limb impairment, necessitating innovative solutions for daily assistance beyond traditional rigid robotics due to their impractical weight and size. Despite still preliminary, soft wearables are arising as a possible solution to fill this gap. Here, we demonstrated an enhanced version of a soft inflatable robot that assists the shoulder against gravity, previously tested with different neurological conditions. Noteworthy improvements include a single-layer actuator, simplifying manufacturing, a built-in bending angle and a nylon hammock, for better armpit conformity. We characterized the actuator (approximately $8 Nm$ at 90° at $70 kPa$ ) and demonstrated its good transparency, both from a kinematic and a muscular standpoint. Then, on 11 healthy individuals, we showed reductions in shoulder muscle activity (both at the anterior and middle deltoid) while performing a lift and hold task, ranging from 16% to almost 60% of the maximum voluntary contraction. More importantly, we confirmed these effects on two SCI individuals SCI, at two different stages of recovery. While preliminary, considering the limited exploration of soft wearable robots for the shoulder in SCI cases, this is a significant advancement playing an important role in the development of future soft technology for SCI assistance.
{"title":"Preliminary Evaluation of a Soft Wearable Robot for Shoulder Movement Assistance","authors":"Lorenzo Campioni;Gianluca Dimonte;Giorgia Sciarrone;Gabriele Righi;Conor Walsh;Marta Gandolla;Giulio Del Popolo;Silvestro Micera;Tommaso Proietti","doi":"10.1109/TMRB.2025.3527708","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3527708","url":null,"abstract":"Spinal cord injuries (SCI) often lead to upper limb impairment, necessitating innovative solutions for daily assistance beyond traditional rigid robotics due to their impractical weight and size. Despite still preliminary, soft wearables are arising as a possible solution to fill this gap. Here, we demonstrated an enhanced version of a soft inflatable robot that assists the shoulder against gravity, previously tested with different neurological conditions. Noteworthy improvements include a single-layer actuator, simplifying manufacturing, a built-in bending angle and a nylon hammock, for better armpit conformity. We characterized the actuator (approximately <inline-formula> <tex-math>$8 Nm$ </tex-math></inline-formula> at 90° at <inline-formula> <tex-math>$70 kPa$ </tex-math></inline-formula>) and demonstrated its good transparency, both from a kinematic and a muscular standpoint. Then, on 11 healthy individuals, we showed reductions in shoulder muscle activity (both at the anterior and middle deltoid) while performing a lift and hold task, ranging from 16% to almost 60% of the maximum voluntary contraction. More importantly, we confirmed these effects on two SCI individuals SCI, at two different stages of recovery. While preliminary, considering the limited exploration of soft wearable robots for the shoulder in SCI cases, this is a significant advancement playing an important role in the development of future soft technology for SCI assistance.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"315-324"},"PeriodicalIF":3.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1109/TMRB.2025.3527695
Tong Yang;Yuexuan Xu;Yongchun Fang;David Navarro-Alarcon;Song Men;Ning Sun
Multiple pneumatic artificial muscles (PAMs) connected through antagonistic joints are more in line with the motion characteristics of human muscles, which better imitate/replace humans to complete a series of actual tasks, such as transportation and assembly. However, there is still a lack of comprehensive solutions to handle hysteresis, creep, input delay, and other inherent characteristics of PAMs, as well as synchronous control and obstacle avoidance that are important to multiple muscles working together. To this end, this paper proposes a new neuroadaptive synchronization controller for 3-D antagonistic PAM-actuated robot hands, which also elaborately designs auxiliary terms to realize obstacle avoidance in Cartesian space and motion constraints in joint space together. Here, dynamic obstacles are regarded as external independent objects, whose nonlinear dynamics are introduced into the proposed controller to restrict end-effectors. Meanwhile, the constraint terms of joint angles and angle velocities are designed as time-varying proportional-differential gains, instead of common barrier functions that may induce overlarge inputs. Particularly, this paper proposes an accelerated gradient-based learning term to relax the linear parameterization condition of uncertain/unmodeled dynamics and obtain accurate weight estimates, based on which, it is proven that both tracking errors and synchronous errors rapidly converge to zero. In addition to complete theoretical analysis, some hardware experiments also verify the effectiveness and adaptability of the proposed controller.
{"title":"Accelerated Gradient-Based Neuroadaptive Synchronization Control for Antagonistic PAM Robot Hands With Obstacle Avoidance and Motion Constraints","authors":"Tong Yang;Yuexuan Xu;Yongchun Fang;David Navarro-Alarcon;Song Men;Ning Sun","doi":"10.1109/TMRB.2025.3527695","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3527695","url":null,"abstract":"Multiple pneumatic artificial muscles (PAMs) connected through antagonistic joints are more in line with the motion characteristics of human muscles, which better imitate/replace humans to complete a series of actual tasks, such as transportation and assembly. However, there is still a lack of comprehensive solutions to handle hysteresis, creep, input delay, and other inherent characteristics of PAMs, as well as synchronous control and obstacle avoidance that are important to multiple muscles working together. To this end, this paper proposes a new neuroadaptive synchronization controller for 3-D antagonistic PAM-actuated robot hands, which also elaborately designs auxiliary terms to realize obstacle avoidance in Cartesian space and motion constraints in joint space together. Here, dynamic obstacles are regarded as external independent objects, whose nonlinear dynamics are introduced into the proposed controller to restrict end-effectors. Meanwhile, the constraint terms of joint angles and angle velocities are designed as time-varying proportional-differential gains, instead of common barrier functions that may induce overlarge inputs. Particularly, this paper proposes an accelerated gradient-based learning term to relax the linear parameterization condition of uncertain/unmodeled dynamics and obtain accurate weight estimates, based on which, it is proven that both tracking errors and synchronous errors rapidly converge to zero. In addition to complete theoretical analysis, some hardware experiments also verify the effectiveness and adaptability of the proposed controller.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"377-391"},"PeriodicalIF":3.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1109/TMRB.2025.3527705
Sujin Yu;Yuri Lim;Soomin Kim;Seok Chang Ryu
Steerable needles have been extensively studied in the medical robotics society for the past two decades, evolving from passive needles to active ones that enable independent motion at their distal tip via robotics technology. Extensive design and actuation options have been proposed for the more capable active needles, followed by a few studies on their path-planning and control techniques; however, no commercial systems are available for the clinical environment yet despite their clear benefit, i.e., improved steerability and versatility compared to the other existing types of needles. This paper reviews the state-of-the-art steerable needle studies to identify research gaps and aims to deepen understanding the mechanics of active needles in soft tissue, which is critical for design optimization, precise control, and preoperative planning but currently remains unclear. To simplify the analysis, this review suggests separating the mechanics of an active needle into two parts: one for each of the tip and the shaft, where the shaft can be understood similarly to the passive needle whose mechanics has been thoroughly studied compared to the active one. Therefore, investigating the tip mechanics, including tissue properties, tip loadings, and tip kinematics, can lead to the complete understanding of active needle mechanics, the next challenges.
{"title":"Design and Mechanics of Active Needles: A Review","authors":"Sujin Yu;Yuri Lim;Soomin Kim;Seok Chang Ryu","doi":"10.1109/TMRB.2025.3527705","DOIUrl":"https://doi.org/10.1109/TMRB.2025.3527705","url":null,"abstract":"Steerable needles have been extensively studied in the medical robotics society for the past two decades, evolving from passive needles to active ones that enable independent motion at their distal tip via robotics technology. Extensive design and actuation options have been proposed for the more capable active needles, followed by a few studies on their path-planning and control techniques; however, no commercial systems are available for the clinical environment yet despite their clear benefit, i.e., improved steerability and versatility compared to the other existing types of needles. This paper reviews the state-of-the-art steerable needle studies to identify research gaps and aims to deepen understanding the mechanics of active needles in soft tissue, which is critical for design optimization, precise control, and preoperative planning but currently remains unclear. To simplify the analysis, this review suggests separating the mechanics of an active needle into two parts: one for each of the tip and the shaft, where the shaft can be understood similarly to the passive needle whose mechanics has been thoroughly studied compared to the active one. Therefore, investigating the tip mechanics, including tissue properties, tip loadings, and tip kinematics, can lead to the complete understanding of active needle mechanics, the next challenges.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"189-199"},"PeriodicalIF":3.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}