Jingke Yan;Yao Cheng;Qin Wang;Lei Liu;Weihua Zhang;Bo Jin
{"title":"Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts","authors":"Jingke Yan;Yao Cheng;Qin Wang;Lei Liu;Weihua Zhang;Bo Jin","doi":"10.1109/TETCI.2024.3377728","DOIUrl":null,"url":null,"abstract":"Thanks to the development of deep learning, machine abnormal sound detection (MASD) based on unsupervised learning has exhibited excellent performance. However, in the task of unsupervised MASD, there are discrepancies between the acoustic characteristics of the test set and the training set under the physical parameter changes (domain shifts) of the same machine's operating conditions. Existing methods not only struggle to stably learn the sound signal features under various domain shifts but also inevitably increase computational overhead. To address these issues, we propose an unsupervised machine abnormal sound detection model based on Transformer and Dynamic Graph Convolution (Unsuper-TDGCN) in this paper. Firstly, we design a network that models time-frequency domain features to capture both global and local spatial and time-frequency interactions, thus improving the model's stability under domain shifts. Then, we introduce a Dynamic Graph Convolutional Network (DyGCN) to model the dependencies between features under domain shifts, enhancing the model's ability to perceive changes in domain features. Finally, a Domain Self-adaptive Network (DSN) is employed to compensate for the performance decline caused by domain shifts, thereby improving the model's adaptive ability for detecting anomalous sounds in MASD tasks under domain shifts. The effectiveness of our proposed model has been validated on multiple datasets.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"2827-2842"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10489914/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Thanks to the development of deep learning, machine abnormal sound detection (MASD) based on unsupervised learning has exhibited excellent performance. However, in the task of unsupervised MASD, there are discrepancies between the acoustic characteristics of the test set and the training set under the physical parameter changes (domain shifts) of the same machine's operating conditions. Existing methods not only struggle to stably learn the sound signal features under various domain shifts but also inevitably increase computational overhead. To address these issues, we propose an unsupervised machine abnormal sound detection model based on Transformer and Dynamic Graph Convolution (Unsuper-TDGCN) in this paper. Firstly, we design a network that models time-frequency domain features to capture both global and local spatial and time-frequency interactions, thus improving the model's stability under domain shifts. Then, we introduce a Dynamic Graph Convolutional Network (DyGCN) to model the dependencies between features under domain shifts, enhancing the model's ability to perceive changes in domain features. Finally, a Domain Self-adaptive Network (DSN) is employed to compensate for the performance decline caused by domain shifts, thereby improving the model's adaptive ability for detecting anomalous sounds in MASD tasks under domain shifts. The effectiveness of our proposed model has been validated on multiple datasets.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.