Ling Huang;Can-Rong Guan;Zhen-Wei Huang;Yuefang Gao;Chang-Dong Wang;C. L. P. Chen
{"title":"Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach","authors":"Ling Huang;Can-Rong Guan;Zhen-Wei Huang;Yuefang Gao;Chang-Dong Wang;C. L. P. Chen","doi":"10.1109/TETCI.2024.3378599","DOIUrl":null,"url":null,"abstract":"Recently, Deep Neural Networks (DNNs) have been largely utilized in Collaborative Filtering (CF) to produce more accurate recommendation results due to their ability of extracting the nonlinear relationships in the user-item pairs. However, the DNNs-based models usually encounter high computational complexity, i.e., consuming very long training time and storing huge amount of trainable parameters. To address these problems, we develop a novel broad recommender system named Broad Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning System (BLS) is used as a mapping function to learn the nonlinear matching relationships in the user-item pairs, which can avoid the above issues while achieving very satisfactory rating prediction performance. Contrary to DNNs, BLS is a shallow network that captures nonlinear relationships between input features simply and efficiently. However, directly feeding the original rating data into BLS is not suitable due to the very large dimensionality of the original rating vector. To this end, a new preprocessing procedure is designed to generate user-item rating collaborative vector, which is a low-dimensional user-item input vector that can leverage quality judgments of the most similar users/items. Convincing experimental results on seven datasets have demonstrated the effectiveness of the BroadCF algorithm.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"2843-2857"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10486956/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Deep Neural Networks (DNNs) have been largely utilized in Collaborative Filtering (CF) to produce more accurate recommendation results due to their ability of extracting the nonlinear relationships in the user-item pairs. However, the DNNs-based models usually encounter high computational complexity, i.e., consuming very long training time and storing huge amount of trainable parameters. To address these problems, we develop a novel broad recommender system named Broad Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning System (BLS) is used as a mapping function to learn the nonlinear matching relationships in the user-item pairs, which can avoid the above issues while achieving very satisfactory rating prediction performance. Contrary to DNNs, BLS is a shallow network that captures nonlinear relationships between input features simply and efficiently. However, directly feeding the original rating data into BLS is not suitable due to the very large dimensionality of the original rating vector. To this end, a new preprocessing procedure is designed to generate user-item rating collaborative vector, which is a low-dimensional user-item input vector that can leverage quality judgments of the most similar users/items. Convincing experimental results on seven datasets have demonstrated the effectiveness of the BroadCF algorithm.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.