Thanveer Shaik;Xiaohui Tao;Haoran Xie;Lin Li;Jianming Yong;Yuefeng Li
{"title":"Graph-Enabled Reinforcement Learning for Time Series Forecasting With Adaptive Intelligence","authors":"Thanveer Shaik;Xiaohui Tao;Haoran Xie;Lin Li;Jianming Yong;Yuefeng Li","doi":"10.1109/TETCI.2024.3398024","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) is renowned for its proficiency in modeling sequential tasks and adaptively learning latent data patterns. Deep learning models have been extensively explored and adopted in regression and classification tasks. However, deep learning has limitations, such as the assumption of equally spaced and ordered data, and the inability to incorporate graph structure in time-series prediction. Graph Neural Network (GNN) can overcome these challenges by capturing the temporal dependencies in time-series data effectively. In this study, we propose a novel approach for predicting time-series data using GNN, augmented with Reinforcement Learning(GraphRL) for monitoring. GNNs explicitly integrate the graph structure of the data into the model, enabling them to naturally capture temporal dependencies. This approach facilitates more accurate predictions in complex temporal structures, as encountered in healthcare, traffic, and weather forecasting domains. We further enhance our GraphRL model's performance through fine-tuning with a Bayesian optimization technique. The proposed framework surpasses baseline models in time-series forecasting and monitoring. This study's contributions include introducing a novel GraphRL framework for time-series prediction and demonstrating GNNs' efficacy compared to traditional deep learning models, such as Recurrent Neural Networks (RNN) and Long Short-Term Memory Networks(LSTM). Overall, this study underscores the potential of GraphRL in yielding accurate and efficient predictions within dynamic RL environments.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"2908-2918"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10530910/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforcement learning (RL) is renowned for its proficiency in modeling sequential tasks and adaptively learning latent data patterns. Deep learning models have been extensively explored and adopted in regression and classification tasks. However, deep learning has limitations, such as the assumption of equally spaced and ordered data, and the inability to incorporate graph structure in time-series prediction. Graph Neural Network (GNN) can overcome these challenges by capturing the temporal dependencies in time-series data effectively. In this study, we propose a novel approach for predicting time-series data using GNN, augmented with Reinforcement Learning(GraphRL) for monitoring. GNNs explicitly integrate the graph structure of the data into the model, enabling them to naturally capture temporal dependencies. This approach facilitates more accurate predictions in complex temporal structures, as encountered in healthcare, traffic, and weather forecasting domains. We further enhance our GraphRL model's performance through fine-tuning with a Bayesian optimization technique. The proposed framework surpasses baseline models in time-series forecasting and monitoring. This study's contributions include introducing a novel GraphRL framework for time-series prediction and demonstrating GNNs' efficacy compared to traditional deep learning models, such as Recurrent Neural Networks (RNN) and Long Short-Term Memory Networks(LSTM). Overall, this study underscores the potential of GraphRL in yielding accurate and efficient predictions within dynamic RL environments.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.