{"title":"A 7-b 76-mW 40-GS/s Hybrid Voltage/Time-Domain ADC With Common-Mode Input Tracking","authors":"Amy Whitcombe;Somnath Kundu;Hariprasad Chandrakumar;Abhishek Agrawal;Thomas Brown;Steven Callender;Brent Carlton;Stefano Pellerano","doi":"10.1109/LSSC.2024.3430851","DOIUrl":null,"url":null,"abstract":"High-speed links require fast, moderate resolution analog-to-digital converters (ADCs) with low power to maximize efficiency. Hybrid voltage and time (V+T) ADCs can combine the speed benefits of time-domain conversion with the reliability of conventional voltage-domain ADCs. This letter demonstrates 1) how the V+T architecture can simplify time interleaving implementation and 2) highlights two methods for improving V+T sub-ADC robustness: a) a voltage-to-time converter (VTC) with common-mode input voltage tracking and b) a merged time-to-voltage and flash time-to-digital converter. This is demonstrated in a 0.103-mm2 22-nm CMOS prototype that consumes 76 mW and gives 32.3-dB SNDR with a Nyquist input at 40 GS/s, for 57-fJ/step FoMw.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"211-214"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10602525/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
High-speed links require fast, moderate resolution analog-to-digital converters (ADCs) with low power to maximize efficiency. Hybrid voltage and time (V+T) ADCs can combine the speed benefits of time-domain conversion with the reliability of conventional voltage-domain ADCs. This letter demonstrates 1) how the V+T architecture can simplify time interleaving implementation and 2) highlights two methods for improving V+T sub-ADC robustness: a) a voltage-to-time converter (VTC) with common-mode input voltage tracking and b) a merged time-to-voltage and flash time-to-digital converter. This is demonstrated in a 0.103-mm2 22-nm CMOS prototype that consumes 76 mW and gives 32.3-dB SNDR with a Nyquist input at 40 GS/s, for 57-fJ/step FoMw.