Long- and Short-Run Asymmetric Effects of Meteorological Parameters on Hemorrhagic Fever with Renal Syndrome in Heilongjiang: A Population-Based Retrospective Study
{"title":"Long- and Short-Run Asymmetric Effects of Meteorological Parameters on Hemorrhagic Fever with Renal Syndrome in Heilongjiang: A Population-Based Retrospective Study","authors":"Yongbin Wang, Bingjie Zhang, Chenlu Xue, Peiping Zhou, Xinwen Dong, Chunjie Xu","doi":"10.1155/2024/6080321","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Examining both long-term and short-term effects can enhance the precision and reliability of time series analysis. This study aimed to delve into the asymmetric effects of weather conditions on hemorrhagic fever with renal syndrome (HFRS) in the long and short terms and build a forecasting system. Data comprising monthly HFRS incidents and weather factors in Heilongjiang from January 2004 to December 2019 were extracted. Subsequently, the long- and short-term asymmetric impacts were examined using the autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models. Next, the samples were partitioned into training and testing subsets to evaluate the predictive potential of both models. From 2004 to 2019, HFRS exhibited a declining trend (average annual percentage change = −6.744%, 95% CI: −13.52%–0.563%) and a dual seasonal pattern, with a prominent peak in June and a secondary one in October–December. This study identified long-term asymmetric effects of rainfall (Wald long-run asymmetry (WLR) = 3.292, <i>p</i> = 0.001), wind velocity (WLR = −3.271, <i>p</i> = 0.001), and air pressure (WLR = −6.453, <i>p</i> < 0.001) on HFRS. Additionally, this study observed short-term asymmetric impacts of relative humidity (Wald short-run symmetry (WSR) = −1.547, <i>p</i> = 0.001), rainfall (WSR = −1.984, <i>p</i> = 0.049), and air pressure (WSR = −2.33, <i>p</i> = 0.021) on HFRS. A unit increase in relative humidity, sunshine hours, and air pressure resulted in about 10.9%, 1.9%, and 13.6% decreases in HFRS, respectively; a unit decrease in relative humidity, rainfall, and sunshine hours led to about 6.7%, 1.8%, and 2% decreases in HFRS, respectively. When temperature increased and decreased by one unit, the HFRS incidence increased by 11.6% and 22.5%, respectively. HFRS also varied significantly with the positive and negative changes in differenced (D) temperature, D (relative humidity), D (wind velocity), D (rainfall), D (air pressure), and D (sunshine hours) at 0−3-month delays over the short term. The NARDL model exhibited notably lower error rates in forecasting compared to the ARDL model. Meteorological parameters affect HFRS in both the long and short term, often showing asymmetric effects. The NARDL model, capable of incorporating various weather parameters, proves to be valuable in predicting HFRS epidemic and guiding strategies for prevention and control.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6080321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6080321","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Examining both long-term and short-term effects can enhance the precision and reliability of time series analysis. This study aimed to delve into the asymmetric effects of weather conditions on hemorrhagic fever with renal syndrome (HFRS) in the long and short terms and build a forecasting system. Data comprising monthly HFRS incidents and weather factors in Heilongjiang from January 2004 to December 2019 were extracted. Subsequently, the long- and short-term asymmetric impacts were examined using the autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models. Next, the samples were partitioned into training and testing subsets to evaluate the predictive potential of both models. From 2004 to 2019, HFRS exhibited a declining trend (average annual percentage change = −6.744%, 95% CI: −13.52%–0.563%) and a dual seasonal pattern, with a prominent peak in June and a secondary one in October–December. This study identified long-term asymmetric effects of rainfall (Wald long-run asymmetry (WLR) = 3.292, p = 0.001), wind velocity (WLR = −3.271, p = 0.001), and air pressure (WLR = −6.453, p < 0.001) on HFRS. Additionally, this study observed short-term asymmetric impacts of relative humidity (Wald short-run symmetry (WSR) = −1.547, p = 0.001), rainfall (WSR = −1.984, p = 0.049), and air pressure (WSR = −2.33, p = 0.021) on HFRS. A unit increase in relative humidity, sunshine hours, and air pressure resulted in about 10.9%, 1.9%, and 13.6% decreases in HFRS, respectively; a unit decrease in relative humidity, rainfall, and sunshine hours led to about 6.7%, 1.8%, and 2% decreases in HFRS, respectively. When temperature increased and decreased by one unit, the HFRS incidence increased by 11.6% and 22.5%, respectively. HFRS also varied significantly with the positive and negative changes in differenced (D) temperature, D (relative humidity), D (wind velocity), D (rainfall), D (air pressure), and D (sunshine hours) at 0−3-month delays over the short term. The NARDL model exhibited notably lower error rates in forecasting compared to the ARDL model. Meteorological parameters affect HFRS in both the long and short term, often showing asymmetric effects. The NARDL model, capable of incorporating various weather parameters, proves to be valuable in predicting HFRS epidemic and guiding strategies for prevention and control.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.