Akendra Singh Chabungbam, Dong-eun Kim, Geonwoo Kim, Minjae Kim, Hong-Sub Lee, Sang-Woo Kim, Hyung-Ho Park
{"title":"Mechanical Strain-Modulated Multifunctional Pr-Doped BaTiO3 Thin Film for Luminescence Sensing and Piezoelectric Energy-Harvesting Applications","authors":"Akendra Singh Chabungbam, Dong-eun Kim, Geonwoo Kim, Minjae Kim, Hong-Sub Lee, Sang-Woo Kim, Hyung-Ho Park","doi":"10.1155/2024/5197160","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Piezoelectric materials with tunable photoluminescence have gained widespread attention for their application in optical communications and optoelectronic sensing devices. This has provided new opportunities to explore the possibility of developing flexible piezoelectric devices with both piezoelectricity and photoluminescence for multifunctional applications. In this study, we prepared a crystalline Pr-doped perovskite BaTiO<sub>3</sub> (BPTO) film on a flexible mica substrate using the radio-frequency (RF) sputtering technique. The photoluminescence intensity remarkably increased by about 210% when external mechanical stress was applied to the film. This remarkable increase in photoluminescence is attributed to lattice distortion and a decrease in crystal symmetry. The BPTO film also exhibited reversible and high-endurance behavior even after 10<sup>3</sup> fatigue bending cycles. Moreover, the BPTO film was utilized as a piezoelectric nanogenerator device, which demonstrated a maximum output voltage of about 2.68 V when external stress was applied through palm tapping. The nanogenerator device yielded an instantaneous output power of 1.80 <i>μ</i>W with an external load resistance of 0.8 M<i>Ω</i>. These versatile and robust properties of the BPTO film demonstrate its potential for future development of lead-free self-powered optoelectronic sensing applications, such as artificial intelligence and biomedical devices.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5197160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5197160","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric materials with tunable photoluminescence have gained widespread attention for their application in optical communications and optoelectronic sensing devices. This has provided new opportunities to explore the possibility of developing flexible piezoelectric devices with both piezoelectricity and photoluminescence for multifunctional applications. In this study, we prepared a crystalline Pr-doped perovskite BaTiO3 (BPTO) film on a flexible mica substrate using the radio-frequency (RF) sputtering technique. The photoluminescence intensity remarkably increased by about 210% when external mechanical stress was applied to the film. This remarkable increase in photoluminescence is attributed to lattice distortion and a decrease in crystal symmetry. The BPTO film also exhibited reversible and high-endurance behavior even after 103 fatigue bending cycles. Moreover, the BPTO film was utilized as a piezoelectric nanogenerator device, which demonstrated a maximum output voltage of about 2.68 V when external stress was applied through palm tapping. The nanogenerator device yielded an instantaneous output power of 1.80 μW with an external load resistance of 0.8 MΩ. These versatile and robust properties of the BPTO film demonstrate its potential for future development of lead-free self-powered optoelectronic sensing applications, such as artificial intelligence and biomedical devices.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system