Replaceable Displacement-Amplifying Rotary Friction Damper: Experimental and Numerical Investigation

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2024-08-09 DOI:10.1155/2024/9402792
Xicheng Zhang, Leilei Liu, Zhihao Qiu, Lanhao Cui, Chengming Hu
{"title":"Replaceable Displacement-Amplifying Rotary Friction Damper: Experimental and Numerical Investigation","authors":"Xicheng Zhang,&nbsp;Leilei Liu,&nbsp;Zhihao Qiu,&nbsp;Lanhao Cui,&nbsp;Chengming Hu","doi":"10.1155/2024/9402792","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Timber structures are vulnerable to failure and collapse under seismic action. To improve the seismic performance of such structures, a replaceable displacement amplification rotary friction damper was proposed and designed. Six specimens were fabricated, each varying in pretension strains and employing three different composite friction materials as control parameters, followed by low cyclic loading tests. The study investigated the working mechanism, hysteresis performance, energy dissipation capacity, performance stability, and displacement amplification effect of the dampers. A finite element model was developed to analyze the hysteresis performance of the damper and evaluate the impact of various parameters on its overall effectiveness. Furthermore, a comparative analysis of the damper’s hysteresis characteristics was conducted. The theoretical calculations and finite element analysis were validated using experimental results, showing a relative error within 10%. The specimens demonstrated a notable displacement amplification capability, which increased as the intermediate connector length decreased. By reducing the length by 200 mm, the maximum damping force could be amplified by 5.5 times, while the nodal rotation values increased by 3.92 times. Additionally, for every 50 <i>με</i> increment in pretension strain, energy consumption increases by an average of 148%, and for each unit increase in the friction coefficient, energy consumption increases by an average of 172%.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9402792","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9402792","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Timber structures are vulnerable to failure and collapse under seismic action. To improve the seismic performance of such structures, a replaceable displacement amplification rotary friction damper was proposed and designed. Six specimens were fabricated, each varying in pretension strains and employing three different composite friction materials as control parameters, followed by low cyclic loading tests. The study investigated the working mechanism, hysteresis performance, energy dissipation capacity, performance stability, and displacement amplification effect of the dampers. A finite element model was developed to analyze the hysteresis performance of the damper and evaluate the impact of various parameters on its overall effectiveness. Furthermore, a comparative analysis of the damper’s hysteresis characteristics was conducted. The theoretical calculations and finite element analysis were validated using experimental results, showing a relative error within 10%. The specimens demonstrated a notable displacement amplification capability, which increased as the intermediate connector length decreased. By reducing the length by 200 mm, the maximum damping force could be amplified by 5.5 times, while the nodal rotation values increased by 3.92 times. Additionally, for every 50 με increment in pretension strain, energy consumption increases by an average of 148%, and for each unit increase in the friction coefficient, energy consumption increases by an average of 172%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可更换位移放大旋转摩擦阻尼器:实验和数值研究
木结构在地震作用下很容易失效和倒塌。为了提高此类结构的抗震性能,我们提出并设计了一种可更换的位移放大旋转摩擦阻尼器。研究人员制作了六个试件,每个试件的预拉伸应变各不相同,并采用三种不同的复合摩擦材料作为控制参数,随后进行了低循环加载试验。研究调查了阻尼器的工作机理、滞后性能、能量耗散能力、性能稳定性和位移放大效应。研究建立了一个有限元模型来分析阻尼器的滞后性能,并评估了各种参数对其整体效果的影响。此外,还对阻尼器的滞后特性进行了比较分析。实验结果对理论计算和有限元分析进行了验证,显示相对误差在 10% 以内。试样显示了显著的位移放大能力,随着中间连接器长度的减少,位移放大能力也在增加。当长度减少 200 毫米时,最大阻尼力可放大 5.5 倍,而节点旋转值则增加了 3.92 倍。此外,预拉伸应变每增加 50 με,能耗平均增加 148%,摩擦系数每增加一个单位,能耗平均增加 172%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Vision Transformer–Based Anomaly Detection Method for Offshore Platform Monitoring Data Investigation of the Mechanism of Hidden Defects in Epoxy Asphalt Pavement on Steel Bridge Decks Under Moisture Diffusion Using Nondestructive Detection Techniques Multidamage Detection of Breathing Cracks in Plate-Like Bridges: Experimental and Numerical Study Designing a Distributed Sensing Network for Structural Health Monitoring of Concrete Tunnels: A Case Study Detection of Delamination in Composite Laminate Using Mode Shape Processing Method and YOLOv8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1