High-Throughput Optimization of Magnetoresistance Materials Based on Lock-In Thermography

Rajkumar Modak, Takamasa Hirai, Yuya Sakuraba, Seiji Mitani, Koichi Oyanagi, Takumi Yamazaki, Takeshi Seki, Ken-ichi Uchida
{"title":"High-Throughput Optimization of Magnetoresistance Materials Based on Lock-In Thermography","authors":"Rajkumar Modak,&nbsp;Takamasa Hirai,&nbsp;Yuya Sakuraba,&nbsp;Seiji Mitani,&nbsp;Koichi Oyanagi,&nbsp;Takumi Yamazaki,&nbsp;Takeshi Seki,&nbsp;Ken-ichi Uchida","doi":"10.1002/apxr.202400021","DOIUrl":null,"url":null,"abstract":"<p>With the giant magnetoresistance (GMR) effect serving as a vital component in modern spintronic technologies, researchers are dedicating significant efforts to improve the performance of GMR devices through material exploration and design optimization. However, traditional GMR measurement approaches are inefficient for comprehensive material and device optimization. This study proposes a high-throughput current-in-plane GMR measurement technique based on thermal imaging of Joule heating utilizing lock-in thermography (LIT). This LIT-based technique is advantageous for efficiently evaluating films with varying compositions and thickness gradients, which is crucial for ongoing material exploration and design optimization to enhance the GMR ratio. First, it is demonstrated that using CoFe/Cu multilayers, the simple Joule heating measurement based on LIT enables quantitative estimation of the GMR ratio. Then, to confirm the usefulness of the proposed method in high-throughput material screening, a case study is shown to investigate the GMR of CoCu-based granular films with a composition gradient. These techniques allow to determine the optimum composition with maximum GMR ratio using the single composition-gradient film and reveal Co<sub>22</sub>Cu<sub>78</sub> as the optimal composition, yielding the largest GMR ratio among the reported polycrystalline CoCu-based granular films. This demonstration accelerates the material and structural optimization of GMR devices.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the giant magnetoresistance (GMR) effect serving as a vital component in modern spintronic technologies, researchers are dedicating significant efforts to improve the performance of GMR devices through material exploration and design optimization. However, traditional GMR measurement approaches are inefficient for comprehensive material and device optimization. This study proposes a high-throughput current-in-plane GMR measurement technique based on thermal imaging of Joule heating utilizing lock-in thermography (LIT). This LIT-based technique is advantageous for efficiently evaluating films with varying compositions and thickness gradients, which is crucial for ongoing material exploration and design optimization to enhance the GMR ratio. First, it is demonstrated that using CoFe/Cu multilayers, the simple Joule heating measurement based on LIT enables quantitative estimation of the GMR ratio. Then, to confirm the usefulness of the proposed method in high-throughput material screening, a case study is shown to investigate the GMR of CoCu-based granular films with a composition gradient. These techniques allow to determine the optimum composition with maximum GMR ratio using the single composition-gradient film and reveal Co22Cu78 as the optimal composition, yielding the largest GMR ratio among the reported polycrystalline CoCu-based granular films. This demonstration accelerates the material and structural optimization of GMR devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于锁定热成像技术的磁阻材料高通量优化
巨磁阻(GMR)效应是现代自旋电子技术的重要组成部分,研究人员正致力于通过材料探索和设计优化来提高 GMR 器件的性能。然而,传统的 GMR 测量方法在全面优化材料和器件方面效率低下。本研究提出了一种高通量面内电流 GMR 测量技术,该技术基于利用锁相热成像技术(LIT)的焦耳热成像。这种基于 LIT 的技术有利于有效评估具有不同成分和厚度梯度的薄膜,这对于不断探索材料和优化设计以提高 GMR 比率至关重要。首先,研究表明,使用 CoFe/Cu 多层膜,基于 LIT 的简单焦耳加热测量可以定量估算 GMR 比率。然后,为了证实所提出的方法在高通量材料筛选中的实用性,展示了一个案例研究,以研究具有成分梯度的 CoCu 基颗粒薄膜的 GMR。这些技术允许使用单一成分梯度薄膜确定具有最大 GMR 比率的最佳成分,并揭示了 Co22Cu78 是最佳成分,在已报道的多晶 CoCu 基颗粒薄膜中产生了最大的 GMR 比率。这一成果加速了 GMR 器件的材料和结构优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024) Masthead (Adv. Phys. Res. 12/2024) Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1