Cascade Structured Plasmonic Liquid Crystal Biosensor for the Rapid Detection of Harmful Bacteria Dispersed in Potable Water

Maria Laura Sforza, Francesca Petronella, Daniela De Biase, Federica Zaccagnini, Seok-In Lim, Usman Akhtar Butt, Antonio d'Alessandro, Nicholas P. Godman, Dean R. Evans, Michael McConney, Kwang-Un Jeong, Luciano De Sio
{"title":"Cascade Structured Plasmonic Liquid Crystal Biosensor for the Rapid Detection of Harmful Bacteria Dispersed in Potable Water","authors":"Maria Laura Sforza,&nbsp;Francesca Petronella,&nbsp;Daniela De Biase,&nbsp;Federica Zaccagnini,&nbsp;Seok-In Lim,&nbsp;Usman Akhtar Butt,&nbsp;Antonio d'Alessandro,&nbsp;Nicholas P. Godman,&nbsp;Dean R. Evans,&nbsp;Michael McConney,&nbsp;Kwang-Un Jeong,&nbsp;Luciano De Sio","doi":"10.1002/adsr.202300201","DOIUrl":null,"url":null,"abstract":"<p>Pathogenic microorganisms contaminating potable water are a serious water quality concern because they have severe consequences for human and environmental health. Managing water contamination requires the availability of fast and highly sensitive point-of-use detection systems responsive to a wide concentration range. In the present work, this goal is achieved by realizing a cascade-structured biosensor that exploits innovative stimuli-responsive materials such as gold nanorods (AuNRs) and photosensitive nematic liquid crystals (NLCs). The cascade structure is fabricated by interfacing a glass substrate in a back-to-front arrangement, hosting an array of bioactivated AuNRs and an NLC cell. The AuNRs array integrates microfluidic channels, allowing direct water sampling and the analysis of reduced water volumes with high sensitivity. The biosensor combines in the same device two independent optical transducers: a bioactive AuNRs array (plasmonic biosensor), sensitive to refractive index alterations, and an NLC cell that detects the presence of pathogens by responding to light intensity variations. The plasmonic biosensor performs exceptionally well for very low concentrations of bacteria. In contrast, the NLC biosensor works for high-concentration bacteria, thus providing a cascade-like detection system able to detect bacteria in a wide concentration range from 10 to 10<sup>9</sup> CFU mL<sup>−1</sup>.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic microorganisms contaminating potable water are a serious water quality concern because they have severe consequences for human and environmental health. Managing water contamination requires the availability of fast and highly sensitive point-of-use detection systems responsive to a wide concentration range. In the present work, this goal is achieved by realizing a cascade-structured biosensor that exploits innovative stimuli-responsive materials such as gold nanorods (AuNRs) and photosensitive nematic liquid crystals (NLCs). The cascade structure is fabricated by interfacing a glass substrate in a back-to-front arrangement, hosting an array of bioactivated AuNRs and an NLC cell. The AuNRs array integrates microfluidic channels, allowing direct water sampling and the analysis of reduced water volumes with high sensitivity. The biosensor combines in the same device two independent optical transducers: a bioactive AuNRs array (plasmonic biosensor), sensitive to refractive index alterations, and an NLC cell that detects the presence of pathogens by responding to light intensity variations. The plasmonic biosensor performs exceptionally well for very low concentrations of bacteria. In contrast, the NLC biosensor works for high-concentration bacteria, thus providing a cascade-like detection system able to detect bacteria in a wide concentration range from 10 to 109 CFU mL−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于快速检测饮用水中有害细菌的级联结构质子液晶生物传感器
污染饮用水的病原微生物是一个严重的水质问题,因为它们会对人类和环境健康造成严重后果。治理水污染需要快速、高灵敏度的使用点检测系统,以应对较大的浓度范围。本研究利用创新的刺激响应材料,如金纳米棒(AuNRs)和光敏向列液晶(NLCs),实现了级联结构生物传感器。这种级联结构是通过在玻璃基底上以前后排列的方式连接生物活化 AuNRs 阵列和 NLC 单元而制成的。AuNRs 阵列集成了微流控通道,可直接对水进行采样,并以高灵敏度对体积缩小的水进行分析。该生物传感器在同一装置中结合了两个独立的光学传感器:一个是对折射率变化敏感的生物活性 AuNRs 阵列(等离子体生物传感器),另一个是通过响应光强度变化来检测病原体存在的 NLC 细胞。等离子体生物传感器在细菌浓度极低的情况下表现优异。相比之下,NLC 生物传感器可检测高浓度细菌,从而提供了一个级联式检测系统,能够检测 10 至 109 CFU mL-1 宽浓度范围内的细菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood (Adv. Sensor Res. 11/2024) Masthead (Adv. Sensor Res. 11/2024) All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters (Adv. Sensor Res. 11/2024) Design Approaches and Electromechanical Modeling of Conformable Piezoelectric-Based Ultrasound Systems (Adv. Sensor Res. 10/2024) Masthead (Adv. Sensor Res. 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1