Macroscopic state‐based reactive voltage control of virtual synchronous generator in AC microgrid

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Circuit Theory and Applications Pub Date : 2024-08-07 DOI:10.1002/cta.4197
Fangyuan Li, Yan Liu, Yanhong Liu
{"title":"Macroscopic state‐based reactive voltage control of virtual synchronous generator in AC microgrid","authors":"Fangyuan Li, Yan Liu, Yanhong Liu","doi":"10.1002/cta.4197","DOIUrl":null,"url":null,"abstract":"In building a smarter and more flexible low‐carbon smart grid system, alternating current (AC) microgrids using virtual synchronous generator (VSG) technology are viewed as a key link in integrating distributed renewable energy access into the main grid. Given that renewable energy sources (such as solar, hydroenergy, and wind) do not have sufficient capacity for reactive power when not available, AC microgrids face challenges in maintaining stable operation. In order to overcome this difficulty, it is hoped that digging deeper and applying more system information can significantly improve the overall performance of the microgrid. This paper proposes a novel method based on macroscopic state dynamic modeling. This method expands the understanding of the inherent rational control mechanism within the microgrid, enabling the overall control objective of the microgrid to be expressed in a more abstract and direct manner. Additionally, by implementing additional convergence constraint conditions on the macroscopic state dynamics, such as based on some optimality criteria, a set of macroscopic state controllers can be obtained to meet specific performance indicators. Theoretical analysis combined with simulation validation demonstrate the effectiveness of this macroscopic state based control strategy. It proves that when meeting the predefined design requirements, the designed controller can enhance the transient response of microgrids in practical applications, thus supporting higher rate of renewable energy access and promoting the development of the smart grid.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4197","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In building a smarter and more flexible low‐carbon smart grid system, alternating current (AC) microgrids using virtual synchronous generator (VSG) technology are viewed as a key link in integrating distributed renewable energy access into the main grid. Given that renewable energy sources (such as solar, hydroenergy, and wind) do not have sufficient capacity for reactive power when not available, AC microgrids face challenges in maintaining stable operation. In order to overcome this difficulty, it is hoped that digging deeper and applying more system information can significantly improve the overall performance of the microgrid. This paper proposes a novel method based on macroscopic state dynamic modeling. This method expands the understanding of the inherent rational control mechanism within the microgrid, enabling the overall control objective of the microgrid to be expressed in a more abstract and direct manner. Additionally, by implementing additional convergence constraint conditions on the macroscopic state dynamics, such as based on some optimality criteria, a set of macroscopic state controllers can be obtained to meet specific performance indicators. Theoretical analysis combined with simulation validation demonstrate the effectiveness of this macroscopic state based control strategy. It proves that when meeting the predefined design requirements, the designed controller can enhance the transient response of microgrids in practical applications, thus supporting higher rate of renewable energy access and promoting the development of the smart grid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交流微电网中基于宏观状态的虚拟同步发电机无功电压控制
在建设更智能、更灵活的低碳智能电网系统过程中,采用虚拟同步发电机(VSG)技术的交流微电网被视为将分布式可再生能源接入主电网的关键环节。鉴于可再生能源(如太阳能、水能和风能)在不可用时没有足够的无功功率,交流微电网在保持稳定运行方面面临挑战。为了克服这一困难,人们希望通过深入挖掘和应用更多的系统信息来显著提高微电网的整体性能。本文提出了一种基于宏观状态动态建模的新方法。该方法拓展了对微电网内在合理控制机制的理解,使微电网的整体控制目标能够以更抽象、更直接的方式表达出来。此外,通过对宏观状态动力学实施额外的收敛约束条件(如基于某些最优性标准),可以获得一组宏观状态控制器,以满足特定的性能指标。理论分析结合仿真验证证明了这种基于宏观状态控制策略的有效性。研究证明,在满足预定义设计要求的情况下,所设计的控制器可以增强微电网在实际应用中的瞬态响应,从而支持更高的可再生能源接入率,促进智能电网的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
期刊最新文献
Issue Information Issue Information Lightweight High‐Throughput TRNG Based on Single‐Node Boolean Chaotic Structure Varactor‐tuned bandpass filter using a microstrip stepped‐impedance combline filter and a new J‐inverter A Compact Implementation of Shadow on an IoT Processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1