Dynamic Equivalents of Active Distribution Networks Considering IBDG Transient Characteristics

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-06-06 DOI:10.1109/TSTE.2024.3410289
Shanhua Hu;Yalou Li;Xing Zhang;Qing Mu;Pengfei Tian;Yizheng Xu
{"title":"Dynamic Equivalents of Active Distribution Networks Considering IBDG Transient Characteristics","authors":"Shanhua Hu;Yalou Li;Xing Zhang;Qing Mu;Pengfei Tian;Yizheng Xu","doi":"10.1109/TSTE.2024.3410289","DOIUrl":null,"url":null,"abstract":"In modern power systems, Inverter-Based Distributed Generators (IBDGs) are rapidly increasing. Their aggregated effects alter the dynamic characteristics of the active distribution network (ADN). However, the typical model of ADNs does not consider the transient characteristics of IBDGs, leading to an inaccurate characterization of the dynamic characteristics of ADNs. This paper proposes an ADN equivalent model that considers the transient characteristics of IBDGs. Firstly, the detailed ADN model with IBDGs and the corresponding typical model are constructed, and the effect of IBDG on the accuracy of the equivalent model under large disturbances is analyzed. To characterize the transient behavior of IBDGs, the Low-Voltage-Ride-Through (LVRT) exit time is introduced. Subsequently, the AGglomerative NESting (AGNES) algorithm is used to cluster IBDGs within ADN based on their LVRT exit times. The determination of several clusters is based on multiple evaluation indexes. Then, a parameterization method is given for an ADN equivalent model structure applicable to IBDG grouping. Finally, the effectiveness of the proposed model is demonstrated by constructing practical engineering. Simulation results illustrate that the proposed model accurately reflects the transient characteristics of ADN and maintains high accuracy under different operating conditions.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2249-2262"},"PeriodicalIF":8.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10551489/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In modern power systems, Inverter-Based Distributed Generators (IBDGs) are rapidly increasing. Their aggregated effects alter the dynamic characteristics of the active distribution network (ADN). However, the typical model of ADNs does not consider the transient characteristics of IBDGs, leading to an inaccurate characterization of the dynamic characteristics of ADNs. This paper proposes an ADN equivalent model that considers the transient characteristics of IBDGs. Firstly, the detailed ADN model with IBDGs and the corresponding typical model are constructed, and the effect of IBDG on the accuracy of the equivalent model under large disturbances is analyzed. To characterize the transient behavior of IBDGs, the Low-Voltage-Ride-Through (LVRT) exit time is introduced. Subsequently, the AGglomerative NESting (AGNES) algorithm is used to cluster IBDGs within ADN based on their LVRT exit times. The determination of several clusters is based on multiple evaluation indexes. Then, a parameterization method is given for an ADN equivalent model structure applicable to IBDG grouping. Finally, the effectiveness of the proposed model is demonstrated by constructing practical engineering. Simulation results illustrate that the proposed model accurately reflects the transient characteristics of ADN and maintains high accuracy under different operating conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑到 IBDG 瞬态特性的有源配电网络动态等效电路
在现代电力系统中,基于逆变器的分布式发电机(IBDGs)正在迅速增加。它们的聚集效应改变了有源配电网络(ADN)的动态特性。然而,ADN 的典型模型并未考虑 IBDG 的瞬态特性,导致对 ADN 动态特性的描述不准确。本文提出了一种考虑 IBDG 瞬态特性的 ADN 等效模型。首先,构建了带 IBDG 的 ADN 详细模型和相应的典型模型,并分析了 IBDG 在大扰动下对等效模型精度的影响。为了描述 IBDG 的瞬态行为,引入了低电压穿越(LVRT)退出时间。随后,使用 AGglomerative NESting(AGNES)算法,根据 IBDG 的低电压穿越退出时间在 ADN 中对其进行聚类。多个聚类的确定基于多个评价指标。然后,给出了适用于 IBDG 分组的 ADN 等效模型结构的参数化方法。最后,通过构建实际工程来证明所提模型的有效性。仿真结果表明,所提出的模型准确地反映了 ADN 的瞬态特性,并在不同的运行条件下保持了较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Transactions on Sustainable Energy Information for Authors 2024 Index IEEE Transactions on Sustainable Energy Vol. 15 Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1