{"title":"Dynamic Operations of a Mobile Charging Crowdsourcing Platform","authors":"Yiming Yan, Xi Lin, Fang He, David Z. W. Wang","doi":"10.1287/trsc.2023.0126","DOIUrl":null,"url":null,"abstract":"This paper investigates the operation of a novel electric vehicles (EVs) charging service mode, that is, crowdsourced mobile charging service for EVs, whereby a crowdsourcing platform is established to arrange suppliers (crowdsourced chargers) to deliver charging service to customers’ electric vehicles (parked EVs) at low-battery levels. From the platform operator’s perspective, we aim to determine the optimal operation strategies for mobile charging crowdsourcing platforms to achieve specific objectives. A mathematical modeling framework is developed to capture the interactions among supply, demand, and service operations in the crowdsourced mobile charging market. To design an efficient solution method to solve the formulated model, we first analyze the model properties by rigorously proving that a crucial variable set for operating the mobile charging crowdsourcing system includes charging price, commission control, and period-specific aggregate demand control. Besides, we provide both an equivalent condition and a necessary condition for checking the feasibility of these crucial variables. On top of this, we construct a search tree according to the operation periods in a day to solve the optimal operation strategies, wherein a nondominated principle is adopted as an accelerating technique in the searching process. The solution obtained from the proposed solution algorithm is proved to be sufficiently close to the actual global optimal solutions of the formulated model up to the resolution of the discretization scheme adopted. Numerical examples provide evidence verifying the model’s validity and the solution method’s efficiency. Overall, the research outcome of this work can offer service operators structured and valuable guidelines for operating mobile charging crowdsourcing platforms.Funding: This work was supported by the Singapore Ministry of Education [Grant RG124/21].Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2023.0126 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"30 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2023.0126","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the operation of a novel electric vehicles (EVs) charging service mode, that is, crowdsourced mobile charging service for EVs, whereby a crowdsourcing platform is established to arrange suppliers (crowdsourced chargers) to deliver charging service to customers’ electric vehicles (parked EVs) at low-battery levels. From the platform operator’s perspective, we aim to determine the optimal operation strategies for mobile charging crowdsourcing platforms to achieve specific objectives. A mathematical modeling framework is developed to capture the interactions among supply, demand, and service operations in the crowdsourced mobile charging market. To design an efficient solution method to solve the formulated model, we first analyze the model properties by rigorously proving that a crucial variable set for operating the mobile charging crowdsourcing system includes charging price, commission control, and period-specific aggregate demand control. Besides, we provide both an equivalent condition and a necessary condition for checking the feasibility of these crucial variables. On top of this, we construct a search tree according to the operation periods in a day to solve the optimal operation strategies, wherein a nondominated principle is adopted as an accelerating technique in the searching process. The solution obtained from the proposed solution algorithm is proved to be sufficiently close to the actual global optimal solutions of the formulated model up to the resolution of the discretization scheme adopted. Numerical examples provide evidence verifying the model’s validity and the solution method’s efficiency. Overall, the research outcome of this work can offer service operators structured and valuable guidelines for operating mobile charging crowdsourcing platforms.Funding: This work was supported by the Singapore Ministry of Education [Grant RG124/21].Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2023.0126 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.