Khee Man Kwon, João P. G. Viana, Kimberly K. O. Walden, Mariola Usovsky, Andrew M. Scaboo, Matthew E. Hudson, Melissa G. Mitchum
{"title":"Genome scans for selection signatures identify candidate virulence genes for adaptation of the soybean cyst nematode to host resistance","authors":"Khee Man Kwon, João P. G. Viana, Kimberly K. O. Walden, Mariola Usovsky, Andrew M. Scaboo, Matthew E. Hudson, Melissa G. Mitchum","doi":"10.1111/mec.17490","DOIUrl":null,"url":null,"abstract":"<p>Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, <i>Heterodera glycines</i>) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between <i>Rhg</i> (for resistance to <i>H. glycines</i>) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (<i>rhg1-a</i>, <i>rhg2</i>, and <i>Rhg4</i>) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72–0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17490","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17490","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between Rhg (for resistance to H. glycines) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (rhg1-a, rhg2, and Rhg4) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72–0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms