Pyroptosis-related gene GSDMC indicates poor prognosis and promotes tumor progression by activating the AKT/mTOR pathway in lung squamous cell carcinoma.

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Carcinogenesis Pub Date : 2024-11-01 Epub Date: 2024-08-13 DOI:10.1002/mc.23805
Yi Zhang, Yuzhi Wang, Jiamiao Weng, Jianlin Chen, Yue Zheng, Yu Xia, Zhixin Huang, Lilan Zhao, Xiongfeng Chen, Haijun Tang, Yi Huang
{"title":"Pyroptosis-related gene GSDMC indicates poor prognosis and promotes tumor progression by activating the AKT/mTOR pathway in lung squamous cell carcinoma.","authors":"Yi Zhang, Yuzhi Wang, Jiamiao Weng, Jianlin Chen, Yue Zheng, Yu Xia, Zhixin Huang, Lilan Zhao, Xiongfeng Chen, Haijun Tang, Yi Huang","doi":"10.1002/mc.23805","DOIUrl":null,"url":null,"abstract":"<p><p>Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2218-2236"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23805","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺鳞状细胞癌中的热蛋白沉积相关基因 GSDMC 可通过激活 AKT/mTOR 通路预示不良预后并促进肿瘤进展。
肺鳞状细胞癌(LUSC)是呼吸系统最常见的恶性肿瘤之一。热蛋白沉积在癌症中起着至关重要的作用,但对肺鳞癌中热蛋白沉积的研究却很有限。在这项研究中,通过对TCGA数据库的分析,观察到在LUSC中与化脓相关的基因有广泛的多组学改变。利用机器学习选择和验证表达水平,GSDMC被选为进一步实验的关键基因。我们的研究发现,GSDMC在LUSC组织和细胞中过表达,并与不良预后相关。在 LUSC 中敲除 GSDMC 可抑制细胞增殖、侵袭、转移和化疗敏感性,并减少裸鼠肿瘤的形成,同时下调增殖和 EMT 相关蛋白的表达。然而,这些作用在 GSDMC 过表达的细胞中被抵消了。从机理上讲,GSDMC的致癌作用主要是通过激活AKT/mTOR通路实现的,而雷帕霉素可以显著逆转这种效应。最后,SMAD4 与 GSDMC 启动子区域的相互作用导致 GSDMC 的表达受到抑制。总之,我们通过生物信息学和实验方法进行的研究不仅证明了SMAD4通过转录靶向调控GSDMC的原癌作用,还表明了将SMAD4/GSDMC/AKT/mTOR信号轴作为LUSC潜在生物标志物和治疗靶点的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
期刊最新文献
Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? Oncogenic fusion of CD63-BCAR4 contributes cancer stem cell-like properties via ALDH1 activity. SIRT1 promotes doxorubicin-induced breast cancer drug resistance and tumor angiogenesis via regulating GSH-mediated redox homeostasis. Oscillatory hypoxia induced gene expression predicts low survival in human breast cancer patients. ROR2 promotes cell cycle progression and cell proliferation through the PI3K/AKT signaling pathway in gastric cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1