{"title":"Correction to \"Cucurbitacin B Induces Inhibitory Effects via CIP2A/PP2A/Akt Pathway in Glioblastoma Multiforme\".","authors":"","doi":"10.1002/mc.23917","DOIUrl":"https://doi.org/10.1002/mc.23917","url":null,"abstract":"","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul Saxena, Sarath Krishnan Mp, Amit Gupta, Sweety Gupta, Anissa A Mirza, Nitin Chaudhary, Bela Goyal
Gallbladder cancer (GBC) is a rare but aggressive malignancy, often diagnosed at advanced stages due to its asymptomatic progression and lack of reliable biomarkers. Chronic inflammation plays a crucial role in its pathogenesis, with inflammatory pathways contributing to tumor development. This study evaluates the diagnostic potential of microRNA19a and microRNA146a, key regulators of inflammatory and oncogenic pathways, in distinguishing GBC from cholelithiasis and healthy controls. An observational analytical study was conducted on 60 participants, divided into three groups: GBC (n = 20), cholelithiasis (n = 20), and non-dysplastic/healthy controls (n = 20). microRNA expression levels in tissue and plasma samples were quantified using RT-PCR and qPCR, with ΔCq values normalized to U6 RNA. Receiver Operating Characteristic (ROC) analysis assessed diagnostic performance, and correlations between tissue and plasma expression levels were examined. Most GBC cases (65%) were diagnosed at Stage IV, with 75% showing liver infiltration. microRNA19a and microRNA146a expression levels were significantly elevated in GBC tissues compared to the other groups (p < 0.0001). Plasma microRNA146a demonstrated high diagnostic accuracy, with an AUC of 0.953, sensitivity of 80%, and specificity of 95%, outperforming microRNA19a (AUC 0.388, sensitivity 20%, specificity 95%). Strong positive correlations between tissue and plasma expression were observed for microRNA146a (r = 0.693, p = 0.0007) and microRNA19a (r = 0.564, p = 0.010), supporting their potential as circulating biomarkers. microRNA146a exhibits good diagnostic utility in differentiating GBC, particularly in advanced disease stages, while microRNA19a reflects inflammation-driven carcinogenesis. Plasma-based microRNA detection offers a promising noninvasive diagnostic approach for early and accurate GBC detection. Further large-scale studies are warranted to validate these biomarkers and explore their therapeutic implications.
{"title":"Diagnostic Utility of microRNA146a and microRNA19a in Gallbladder Cancer: A Pilot Study.","authors":"Rahul Saxena, Sarath Krishnan Mp, Amit Gupta, Sweety Gupta, Anissa A Mirza, Nitin Chaudhary, Bela Goyal","doi":"10.1002/mc.23916","DOIUrl":"https://doi.org/10.1002/mc.23916","url":null,"abstract":"<p><p>Gallbladder cancer (GBC) is a rare but aggressive malignancy, often diagnosed at advanced stages due to its asymptomatic progression and lack of reliable biomarkers. Chronic inflammation plays a crucial role in its pathogenesis, with inflammatory pathways contributing to tumor development. This study evaluates the diagnostic potential of microRNA19a and microRNA146a, key regulators of inflammatory and oncogenic pathways, in distinguishing GBC from cholelithiasis and healthy controls. An observational analytical study was conducted on 60 participants, divided into three groups: GBC (n = 20), cholelithiasis (n = 20), and non-dysplastic/healthy controls (n = 20). microRNA expression levels in tissue and plasma samples were quantified using RT-PCR and qPCR, with ΔCq values normalized to U6 RNA. Receiver Operating Characteristic (ROC) analysis assessed diagnostic performance, and correlations between tissue and plasma expression levels were examined. Most GBC cases (65%) were diagnosed at Stage IV, with 75% showing liver infiltration. microRNA19a and microRNA146a expression levels were significantly elevated in GBC tissues compared to the other groups (p < 0.0001). Plasma microRNA146a demonstrated high diagnostic accuracy, with an AUC of 0.953, sensitivity of 80%, and specificity of 95%, outperforming microRNA19a (AUC 0.388, sensitivity 20%, specificity 95%). Strong positive correlations between tissue and plasma expression were observed for microRNA146a (r = 0.693, p = 0.0007) and microRNA19a (r = 0.564, p = 0.010), supporting their potential as circulating biomarkers. microRNA146a exhibits good diagnostic utility in differentiating GBC, particularly in advanced disease stages, while microRNA19a reflects inflammation-driven carcinogenesis. Plasma-based microRNA detection offers a promising noninvasive diagnostic approach for early and accurate GBC detection. Further large-scale studies are warranted to validate these biomarkers and explore their therapeutic implications.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear. IDH (isocitrate dehydrogenase) mutations, which induce metabolic reprogramming and result in notable heterogeneity among glioma with different IDH genotypes. Through analysis of public glioma databases, we identified a high expression of RNF7 in glioma and its correlation with patient prognosis. Moreover, we observed variations in RNF7 expression and its association with patient outcomes under different treatment modalities among different IDH genotypes. In this study, we demonstrated the critical role of RNF7 in the malignant phenotype of IDH1-mutant glioma and its contribution to radiation resistance. Subsequent functional enrichment analysis of RNF7 in glioma, coupled with validation through cellular experiments, confirmed its significant involvement in maintaining redox balance. Our findings suggest that RNF7 exerts a buffering effect against radiation-induced oxidative stress and counterbalances the redox stress induced by IDH1 mutation through its anti-ROS activity. Additionally, our follow-up investigations revealed that the upregulation of RNF7 after radiation exposure and in IDH1-mutant glioma cells is induced by ROS. Collectively, our study underscores the potential of RNF7 as a molecular biomarker in glioma. Elevated RNF7 expression often indicates a heightened metabolic resilience in glioma, leading to resistance against radiotherapy.
RNF7 (Ring Finger Protein 7)是CRLs (Cullin-RING-type E3泛素连接酶)的关键组成部分,具有内在的抗ros能力。RNF7的异常表达已在各种肿瘤类型中观察到,并且已知其显著影响肿瘤的发生和进展。然而,RNF7在胶质母细胞瘤中的具体作用尚不清楚。IDH(异柠檬酸脱氢酶)突变,可诱导代谢重编程,并导致不同IDH基因型胶质瘤的显著异质性。通过对公共胶质瘤数据库的分析,我们发现了RNF7在胶质瘤中的高表达及其与患者预后的相关性。此外,我们观察到不同IDH基因型在不同治疗方式下RNF7表达的差异及其与患者预后的关系。在这项研究中,我们证明了RNF7在idh1突变胶质瘤的恶性表型中的关键作用及其对辐射抗性的贡献。随后对胶质瘤中RNF7的功能富集分析,以及通过细胞实验的验证,证实了它在维持氧化还原平衡中的重要作用。我们的研究结果表明,RNF7对辐射诱导的氧化应激具有缓冲作用,并通过其抗ros活性来抵消IDH1突变引起的氧化还原应激。此外,我们的后续研究发现,辐射暴露后和idh1突变胶质瘤细胞中RNF7的上调是由ROS诱导的。总的来说,我们的研究强调了RNF7作为胶质瘤分子生物标志物的潜力。升高的RNF7表达通常表明胶质瘤中代谢恢复能力增强,导致对放疗的抵抗。
{"title":"RNF7-Mediated ROS Targets Malignant Phenotype and Radiotherapy Sensitivity in Glioma With Different IDH1 Genotypes.","authors":"Yiran Tao, Zimin Shi, Xianyin Liang, Yuqian Zheng, Lirui Dai, Xiang Li, Zian Li, Wulong Liang, Gaojie Bai, Hao Li, Yuan Lyu, Junqi Li, Tao Zhang, Weihua Hu, Shaolong Zhou, Qiao Shan, Xudong Fu, Xinjun Wang","doi":"10.1002/mc.23876","DOIUrl":"10.1002/mc.23876","url":null,"abstract":"<p><p>RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear. IDH (isocitrate dehydrogenase) mutations, which induce metabolic reprogramming and result in notable heterogeneity among glioma with different IDH genotypes. Through analysis of public glioma databases, we identified a high expression of RNF7 in glioma and its correlation with patient prognosis. Moreover, we observed variations in RNF7 expression and its association with patient outcomes under different treatment modalities among different IDH genotypes. In this study, we demonstrated the critical role of RNF7 in the malignant phenotype of IDH1-mutant glioma and its contribution to radiation resistance. Subsequent functional enrichment analysis of RNF7 in glioma, coupled with validation through cellular experiments, confirmed its significant involvement in maintaining redox balance. Our findings suggest that RNF7 exerts a buffering effect against radiation-induced oxidative stress and counterbalances the redox stress induced by IDH1 mutation through its anti-ROS activity. Additionally, our follow-up investigations revealed that the upregulation of RNF7 after radiation exposure and in IDH1-mutant glioma cells is induced by ROS. Collectively, our study underscores the potential of RNF7 as a molecular biomarker in glioma. Elevated RNF7 expression often indicates a heightened metabolic resilience in glioma, leading to resistance against radiotherapy.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"652-667"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-21DOI: 10.1002/mc.23884
Renhou Zhi, Qi Li, Huiqin Zhang, Fan Fan
Vacuolar protein sorting 45 (VPS45) has recently been implicated in the development of ovarian cancer and non-small cell lung cancer. However, its role in the onset and progression of hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of VPS45 in HCC. Bioassays were conducted to assess the prognostic significance of VPS45 in HCC. Techniques such as western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) were used to confirm the expression levels of VPS45 in HCC tissues and cell lines, as well as to evaluate the expression of downstream effectors in its potential tumorigenic pathways. The impact of VPS45 on HCC cell invasion, proliferation, and migration was assessed using the Cell Counting Kit-8 (CCK-8), wound healing, and transwell assays. Furthermore, the effect of VPS45 on HCC tumorigenesis in vivo was evaluated through subcutaneous tumor formation assays in BALB/c nude mice. VPS45 is markedly overexpressed in both HCC tissues and cell lines. Its expression escalates with advancing tumor grade and clinical stage, and high VPS45 levels are indicative of poor prognosis. In vitro experiments revealed that VPS45 overexpression significantly boosts HCC cell proliferation, migration, and invasion. Conversely, VPS45 knockdown hindered HCC progression in vivo. Investigation into pathway protein expression suggests that VPS45 facilitates HCC progression through its involvement in the Wnt/β-catenin signaling pathway. The overexpression of VPS45 contributes to the development of malignant phenotypes in HCC cells, resulting in a poor prognosis. Targeting VPS45 may offer a viable therapeutic strategy for managing HCC.
{"title":"VPS45 Contributes to the Progression of Hepatocellular Carcinoma by Triggering the Wnt/β-Catenin Signaling Pathway.","authors":"Renhou Zhi, Qi Li, Huiqin Zhang, Fan Fan","doi":"10.1002/mc.23884","DOIUrl":"10.1002/mc.23884","url":null,"abstract":"<p><p>Vacuolar protein sorting 45 (VPS45) has recently been implicated in the development of ovarian cancer and non-small cell lung cancer. However, its role in the onset and progression of hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of VPS45 in HCC. Bioassays were conducted to assess the prognostic significance of VPS45 in HCC. Techniques such as western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) were used to confirm the expression levels of VPS45 in HCC tissues and cell lines, as well as to evaluate the expression of downstream effectors in its potential tumorigenic pathways. The impact of VPS45 on HCC cell invasion, proliferation, and migration was assessed using the Cell Counting Kit-8 (CCK-8), wound healing, and transwell assays. Furthermore, the effect of VPS45 on HCC tumorigenesis in vivo was evaluated through subcutaneous tumor formation assays in BALB/c nude mice. VPS45 is markedly overexpressed in both HCC tissues and cell lines. Its expression escalates with advancing tumor grade and clinical stage, and high VPS45 levels are indicative of poor prognosis. In vitro experiments revealed that VPS45 overexpression significantly boosts HCC cell proliferation, migration, and invasion. Conversely, VPS45 knockdown hindered HCC progression in vivo. Investigation into pathway protein expression suggests that VPS45 facilitates HCC progression through its involvement in the Wnt/β-catenin signaling pathway. The overexpression of VPS45 contributes to the development of malignant phenotypes in HCC cells, resulting in a poor prognosis. Targeting VPS45 may offer a viable therapeutic strategy for managing HCC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"744-755"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esophageal squamous cell carcinoma (ESCC) is one of the main subtypes of esophageal carcinoma with high morbidity. This study aimed to explore the role of FKBP prolyl isomerase 11 (FKBP11) in ESCC and investigate the underlying mechanism. FKBP11 levels in ESCC tumor tissues and cell lines were measured. Cell function assays were conducted to evaluate the role of FKBP11 in ESCC cells. The xenograft mouse model was established to validate the effect of FKBP11 on ESCC tumorigenesis in vivo. The co-immunoprecipitation assay was performed to determine the FKBP11-interacting proteins. Obvious upregulations in FKBP11 expression were found in ESCC tumor tissues and cell lines. In vitro, FKBP11 knockdown weakened cell proliferation, migration, and invasion capacities and reinforced cell apoptosis in ESCC cells. In vivo, FKBP11 knockdown slowed ESCC tumorigenesis. The following mechanism investigation determined serine and arginine-rich splicing factor 1 (SRSF1) as the FKBP11-interacting protein in ESCC cells. FKBP11 directly bound to SRSF1 and FKBP11 knockdown decreased SRSF1 mRNA level. SRSF1 overexpression abrogated the inhibitory effect of FKBP11 knockdown on the proliferation and migration of ESCC cells. KBP11 functions as an oncogene in ESCC by targeting SRSF1.
{"title":"FKBP Prolyl Isomerase 11: A Novel Oncogene Interacting With SRSF1 in Esophageal Squamous Cell Carcinoma.","authors":"Zheng Ding, Zhichao Hou, Tangjuan Zhang, Peng Wang, Xue Pan, Xiangnan Li, Song Zhao","doi":"10.1002/mc.23877","DOIUrl":"10.1002/mc.23877","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is one of the main subtypes of esophageal carcinoma with high morbidity. This study aimed to explore the role of FKBP prolyl isomerase 11 (FKBP11) in ESCC and investigate the underlying mechanism. FKBP11 levels in ESCC tumor tissues and cell lines were measured. Cell function assays were conducted to evaluate the role of FKBP11 in ESCC cells. The xenograft mouse model was established to validate the effect of FKBP11 on ESCC tumorigenesis in vivo. The co-immunoprecipitation assay was performed to determine the FKBP11-interacting proteins. Obvious upregulations in FKBP11 expression were found in ESCC tumor tissues and cell lines. In vitro, FKBP11 knockdown weakened cell proliferation, migration, and invasion capacities and reinforced cell apoptosis in ESCC cells. In vivo, FKBP11 knockdown slowed ESCC tumorigenesis. The following mechanism investigation determined serine and arginine-rich splicing factor 1 (SRSF1) as the FKBP11-interacting protein in ESCC cells. FKBP11 directly bound to SRSF1 and FKBP11 knockdown decreased SRSF1 mRNA level. SRSF1 overexpression abrogated the inhibitory effect of FKBP11 knockdown on the proliferation and migration of ESCC cells. KBP11 functions as an oncogene in ESCC by targeting SRSF1.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"638-651"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-13DOI: 10.1002/mc.23873
Chenkun He, Rongrong Liu, Tianli Zhou
Hepatocellular carcinoma (HCC) is a major global health concern that accounts for more than 80% of all primary hepatic carcinomas. The long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) has been linked to HCC cell stemness and proliferation. However, the exact function of FGD5-AS1 in HCC remains unclear. Cell viability and proliferation were examined using the CCK8 and colony formation assays, respectively. Cell stemness was examined using a sphere formation assay. To investigate the relation between Musashi 2 (MSI2) and FGD5-AS1 (or protein kinase D1 [PKD1]), RNA immunoprecipitation and RNA pull-down assays were used. Furthermore, a xenograft mouse model was established to evaluate the function of FGD5-AS1 in vivo. FGD5-AS1, MSI2, and PKD1 were upregulated in the HCC tissues. FGD5-AS1 knockdown significantly inhibited the viability, proliferation, and stemness of HCC cells and decreased the expression of MSI2, PKD1, octamer-binding transcription factor 4, SOX2, NANOG, and Prominin-1 in HCC cells. Mechanistically, FGD5-AS1 increased PKD1 mRNA stability by upregulating MSI2 expression. Both MSI2 and PKD1 ameliorated sh-FGD5-AS1's inhibition of HCC cell viability, proliferation, and stemness. Furthermore, FGD5-AS1 silencing inhibited HCC tumor growth and stemness in vivo. FGD5-AS1 promotes the stemness of HCC cells by activating the MSI2/PKD1 axis. Our study provides a new theoretical foundation for the development of novel HCC treatments.
{"title":"LncRNA FGD5-AS1 Facilitates Hepatocellular Carcinoma Cell Stemness by Enhancing PKD1 mRNA Stability Through Binding With MSI2.","authors":"Chenkun He, Rongrong Liu, Tianli Zhou","doi":"10.1002/mc.23873","DOIUrl":"10.1002/mc.23873","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a major global health concern that accounts for more than 80% of all primary hepatic carcinomas. The long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) has been linked to HCC cell stemness and proliferation. However, the exact function of FGD5-AS1 in HCC remains unclear. Cell viability and proliferation were examined using the CCK8 and colony formation assays, respectively. Cell stemness was examined using a sphere formation assay. To investigate the relation between Musashi 2 (MSI2) and FGD5-AS1 (or protein kinase D1 [PKD1]), RNA immunoprecipitation and RNA pull-down assays were used. Furthermore, a xenograft mouse model was established to evaluate the function of FGD5-AS1 in vivo. FGD5-AS1, MSI2, and PKD1 were upregulated in the HCC tissues. FGD5-AS1 knockdown significantly inhibited the viability, proliferation, and stemness of HCC cells and decreased the expression of MSI2, PKD1, octamer-binding transcription factor 4, SOX2, NANOG, and Prominin-1 in HCC cells. Mechanistically, FGD5-AS1 increased PKD1 mRNA stability by upregulating MSI2 expression. Both MSI2 and PKD1 ameliorated sh-FGD5-AS1's inhibition of HCC cell viability, proliferation, and stemness. Furthermore, FGD5-AS1 silencing inhibited HCC tumor growth and stemness in vivo. FGD5-AS1 promotes the stemness of HCC cells by activating the MSI2/PKD1 axis. Our study provides a new theoretical foundation for the development of novel HCC treatments.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"680-690"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-13DOI: 10.1002/mc.23879
Yan Lin, Tailin Guo, Lishuang Che, Jieqiong Dong, Ting Yu, Chaiming Zeng, Ziyu Wu
β-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression. The impacts of β-elemene on ACC cell viability, proliferation, migration, and apoptosis were investigated through CCK-8 assay, clone formation assay, Transwell experiment, Wound healing assay, and flow cytometry. The miR-486-3p expression was analyzed utilizing RT-qPCR. According to different databases, neuronal pentraxin 1 (NPTX1) is the predicted downstream target gene of miR-486-3p. Western blot and RT-qPCR were utilized to examine NPTX1 expression. Silencing miR-486-3p or Overexpression NPTX1 in ACC cells further explored whether β-elemene affects ACC cells by regulating miR-486-3p/NPTX1. Finally, a subcutaneous graft tumor model was constructed to investigate how β-elemene may impact tumor growth in vivo. β-elemene decreased the cell viability, hindered cell proliferation and migration capacity, and induced apoptosis of ACC cells. miR-486-3p level in ACC cells was notably reduced in comparison to normal cells, but treatment with β-elemene markedly increased miR-486-3p expression. Additionally, ACC cells showed high level of NPTX1, while miR-486-3p targeted negative regulation of NPTX1. Overexpression miR-486-3p hindered the malignant progression of ACC cells, whereas overexpression NPTX1 reversed the impact of overexpression miR-486-3p. Silencing miR-486-3p or overexpression NPTX1 both attenuated the suppressive influence of β-elemene on the malignant behavior of ACC cells. Additionally, tumor growth was suppressed and apoptosis was induced in tumor cells in vivo by β-elemene. In conclusion, β-elemene reduces ACC cell viability, hinders proliferation and migration, and induces apoptosis through the miR-486-3p/NPTX1 axis.
{"title":"β-Elemene Inhibits Adrenocortical Carcinoma Cell Proliferation and Migration, and Induces Apoptosis by Up-Regulating miR-486-3p/Targeting NPTX1 Axis.","authors":"Yan Lin, Tailin Guo, Lishuang Che, Jieqiong Dong, Ting Yu, Chaiming Zeng, Ziyu Wu","doi":"10.1002/mc.23879","DOIUrl":"10.1002/mc.23879","url":null,"abstract":"<p><p>β-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression. The impacts of β-elemene on ACC cell viability, proliferation, migration, and apoptosis were investigated through CCK-8 assay, clone formation assay, Transwell experiment, Wound healing assay, and flow cytometry. The miR-486-3p expression was analyzed utilizing RT-qPCR. According to different databases, neuronal pentraxin 1 (NPTX1) is the predicted downstream target gene of miR-486-3p. Western blot and RT-qPCR were utilized to examine NPTX1 expression. Silencing miR-486-3p or Overexpression NPTX1 in ACC cells further explored whether β-elemene affects ACC cells by regulating miR-486-3p/NPTX1. Finally, a subcutaneous graft tumor model was constructed to investigate how β-elemene may impact tumor growth in vivo. β-elemene decreased the cell viability, hindered cell proliferation and migration capacity, and induced apoptosis of ACC cells. miR-486-3p level in ACC cells was notably reduced in comparison to normal cells, but treatment with β-elemene markedly increased miR-486-3p expression. Additionally, ACC cells showed high level of NPTX1, while miR-486-3p targeted negative regulation of NPTX1. Overexpression miR-486-3p hindered the malignant progression of ACC cells, whereas overexpression NPTX1 reversed the impact of overexpression miR-486-3p. Silencing miR-486-3p or overexpression NPTX1 both attenuated the suppressive influence of β-elemene on the malignant behavior of ACC cells. Additionally, tumor growth was suppressed and apoptosis was induced in tumor cells in vivo by β-elemene. In conclusion, β-elemene reduces ACC cell viability, hinders proliferation and migration, and induces apoptosis through the miR-486-3p/NPTX1 axis.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"691-702"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thoracic tumours represent a significant proportion of malignant cancers. While radiotherapy (RT) improves prognosis, it can also lead to side effects such as radiation-induced pneumonitis (RP). Since SIRT6 is involved in DNA repair, energy metabolism and inflammation, this study aims to investigate the expression of SIRT6 in lymphocytes as a potential biomarker and therapeutic target for RP. This study included 170 patients diagnosed with thoracic tumours, all of whom underwent thoracic RT. RP was evaluated and classified as severe RP (SRP) and lower as non-severe RP (NSRP). Analyses were performed using SPSS version 26.0 and the R. Among 170 patients in this study, 124 developed NSRP, and 46 experienced SRP. The univariate analysis showed that SIRT6 expression (cOR, 0.33, 95%CI, 0.18-0.97 before RT and 0.31, 0.19-0.98 after RT), clinical factors, dosimetric parameters and haematological/serological parameters were associated with SRP before and after RT. Our multivariable logistic regression showed that SIRT6 expression was significantly associated with risk of SRP before (aOR, 0.32, 95%CI, 0.15-0.96) and after RT (aOR, 0.32, 95%CI, 0.18-0.99) after adjustment with other confounders. Moreover, the receiver operating characteristic curve analysis revealed that the combined multivariable model exhibited superior predictive capability compared to any single predictor (overall AUC, 0.93, 95%CI, 0.90-0.97 before RT and AUC, 0.91, 95%CI, 0.87-0.96 after RT). The expression of SIRT6 alone or in combination with other risk factors was associated with an increased risk of SRP, suggesting a novel approach for the prevention and treatment of radiation pneumonitis in clinical practice.
{"title":"Association of SIRT6 Expression With Risk of Pneumonitis Induced by Radiotherapy in Cancer Patients.","authors":"Fengyuan Yu, Zheng Gong, Yuan Li, Danial F Naseem, Chen Li, Miaowei Wen, Bingying Zhao, Zhezhe Xu, Shanshan Zhang, Rukun Zang, Ailu Wu, Qingxin Han, Shuhui Wu, Hongwei Li, Yipeng Song","doi":"10.1002/mc.23900","DOIUrl":"https://doi.org/10.1002/mc.23900","url":null,"abstract":"<p><p>Thoracic tumours represent a significant proportion of malignant cancers. While radiotherapy (RT) improves prognosis, it can also lead to side effects such as radiation-induced pneumonitis (RP). Since SIRT6 is involved in DNA repair, energy metabolism and inflammation, this study aims to investigate the expression of SIRT6 in lymphocytes as a potential biomarker and therapeutic target for RP. This study included 170 patients diagnosed with thoracic tumours, all of whom underwent thoracic RT. RP was evaluated and classified as severe RP (SRP) and lower as non-severe RP (NSRP). Analyses were performed using SPSS version 26.0 and the R. Among 170 patients in this study, 124 developed NSRP, and 46 experienced SRP. The univariate analysis showed that SIRT6 expression (cOR, 0.33, 95%CI, 0.18-0.97 before RT and 0.31, 0.19-0.98 after RT), clinical factors, dosimetric parameters and haematological/serological parameters were associated with SRP before and after RT. Our multivariable logistic regression showed that SIRT6 expression was significantly associated with risk of SRP before (aOR, 0.32, 95%CI, 0.15-0.96) and after RT (aOR, 0.32, 95%CI, 0.18-0.99) after adjustment with other confounders. Moreover, the receiver operating characteristic curve analysis revealed that the combined multivariable model exhibited superior predictive capability compared to any single predictor (overall AUC, 0.93, 95%CI, 0.90-0.97 before RT and AUC, 0.91, 95%CI, 0.87-0.96 after RT). The expression of SIRT6 alone or in combination with other risk factors was associated with an increased risk of SRP, suggesting a novel approach for the prevention and treatment of radiation pneumonitis in clinical practice.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear. In our study, we found that the activation of HGF/c-Met was crucial for TR maintenance. Synergistic interaction with HOTAIR and EZH2 accelerated HGF expression by repressing miR-141/200a. Additionally, HGF/c-Met activated NF-κB, forming a positive feedback loop of EZH2/HOTAIR-miR-141/200a-HGF/c-Met-NF-κB. Our findings indicated that HGF/c-Met functioned as an important biomarker for TR, and HGF/c-Met inhibition provided a novel approach to TR treatment.
{"title":"HGF/c-Met Promotes Breast Cancer Tamoxifen Resistance Through the EZH2/HOTAIR-miR-141/200a Feedback Signaling Pathway.","authors":"Xiaofeng Lai, Yuan Zhang, Mengyang Li, Shentong Yu, Shuiliang Wang, Shenghang Zhang, Huimin Niu, Li Chen, Xiaopeng Lan, Jian Zhang, Suning Chen","doi":"10.1002/mc.23878","DOIUrl":"10.1002/mc.23878","url":null,"abstract":"<p><p>Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear. In our study, we found that the activation of HGF/c-Met was crucial for TR maintenance. Synergistic interaction with HOTAIR and EZH2 accelerated HGF expression by repressing miR-141/200a. Additionally, HGF/c-Met activated NF-κB, forming a positive feedback loop of EZH2/HOTAIR-miR-141/200a-HGF/c-Met-NF-κB. Our findings indicated that HGF/c-Met functioned as an important biomarker for TR, and HGF/c-Met inhibition provided a novel approach to TR treatment.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"769-783"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-21DOI: 10.1002/mc.23885
Hang Yang, Rong Xiong, Ruolan Zhang, Shan Sun, Yingjie Pan, Quanneng Zhao, Jun Bie, Yi Luo, Guiqin Song, Kang Liu
Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells. Additionally, LINC01305 and LAD1 jointly promoted the epithelial-mesenchymal transition (EMT) process by activating the phosphoinositide-3-kinase-protein kinase B (PI3K/AKT) signaling pathway. Moreover, LINC01305 and LAD1 were related to the late clinical stage and lymph node metastasis of ESCC. Our study demonstrated that LINC01305 and LAD1 are major determinants of ESCC dissemination and revealed a novel molecular mechanism of cytoskeletal reorganization that controls ESCC metastasis. Trial Registration: N/A.
{"title":"LINC01305 and LAD1 Co-Regulate CTTN and N-WASP Phosphorylation, Mediating Cytoskeletal Reorganization to Promote ESCC Metastasis.","authors":"Hang Yang, Rong Xiong, Ruolan Zhang, Shan Sun, Yingjie Pan, Quanneng Zhao, Jun Bie, Yi Luo, Guiqin Song, Kang Liu","doi":"10.1002/mc.23885","DOIUrl":"10.1002/mc.23885","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells. Additionally, LINC01305 and LAD1 jointly promoted the epithelial-mesenchymal transition (EMT) process by activating the phosphoinositide-3-kinase-protein kinase B (PI3K/AKT) signaling pathway. Moreover, LINC01305 and LAD1 were related to the late clinical stage and lymph node metastasis of ESCC. Our study demonstrated that LINC01305 and LAD1 are major determinants of ESCC dissemination and revealed a novel molecular mechanism of cytoskeletal reorganization that controls ESCC metastasis. Trial Registration: N/A.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"756-768"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}