Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-08-12 DOI:10.1016/j.molp.2024.08.003
Song Wu, Ana Luisa Malaco Morotti, Jun Yang, Ertao Wang, Evangelos C Tatsis
{"title":"Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort.","authors":"Song Wu, Ana Luisa Malaco Morotti, Jun Yang, Ertao Wang, Evangelos C Tatsis","doi":"10.1016/j.molp.2024.08.003","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, \"Hyper cells\", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1439-1457"},"PeriodicalIF":17.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.08.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, "Hyper cells", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞 RNA 测序有助于阐明圣约翰草中抗抑郁剂金丝桃素的完整生物合成过程。
金丝桃素(Hyperforin)是圣约翰草(金丝桃)具有抗抑郁功效的化合物,但其完整的生物合成过程仍然未知。基于大量 RNA 测序数据的共表达分析或基因组挖掘发现的基因未能发现金丝桃素生物合成过程中缺失的步骤。在此,我们对组装成 32 条染色体的 1.54 Gb 四倍体穿孔草基因组进行了测序,其支架 N50 值为 42.44 Mb。通过单细胞RNA-seq,我们发现了一种细胞,即Hyper细胞,在叶片和花中都能从头开始进行高穿孔素的生物合成。通过在酵母和烟草中进行途径重组,我们发现并鉴定了四种跨膜前酰转移酶(HpPT1-4),它们定位在质体包膜上,解决了超木质素生物合成的问题。高杆生长素的多环支架是通过不规则异戊烯偶联和串联环化反应级联生成的。我们的研究结果揭示了高良姜素的生物合成方式和地点,从而实现了完整途径的合成生物学重组。这些结果加深了我们对细胞水平上特殊代谢的理解,我们预计植物代谢的途径阐释将会加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. Branching out: nitrogen-dependent modulation of strigolactone signalling. The long non-coding RNA CARMA directs sucrose-responsive osmoregulation. A metabolic roadmap of waxy corn flavor. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1