{"title":"Dynamic activity changes in transcription factors: Unlocking the mechanisms regulating physiological changes in the brain.","authors":"Kentaro Abe","doi":"10.1016/j.neures.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) regulate the establishment and modulation of the transcriptome within cells, thereby playing a crucial role in various aspects of cellular physiology throughout the body. Quantitative measurement of TF activity during the development, function, and dysfunction of the brain is essential for gaining a deeper understanding of the regulatory mechanisms governing gene expression during these processes. Due to their role as regulators of gene expression, assessing and modulating detailed TF activity contributes to the development of practical methods to intervene in these processes, potentially offering more efficient treatments for diseases. Recent methodologies have revealed that TF activity is dynamically regulated within cells and organisms, including the adult brain. This review summarizes the regulatory mechanisms of TF activities and the methodologies used to assess them, emphasizing their importance in both fundamental research and clinical applications.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2024.08.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factors (TFs) regulate the establishment and modulation of the transcriptome within cells, thereby playing a crucial role in various aspects of cellular physiology throughout the body. Quantitative measurement of TF activity during the development, function, and dysfunction of the brain is essential for gaining a deeper understanding of the regulatory mechanisms governing gene expression during these processes. Due to their role as regulators of gene expression, assessing and modulating detailed TF activity contributes to the development of practical methods to intervene in these processes, potentially offering more efficient treatments for diseases. Recent methodologies have revealed that TF activity is dynamically regulated within cells and organisms, including the adult brain. This review summarizes the regulatory mechanisms of TF activities and the methodologies used to assess them, emphasizing their importance in both fundamental research and clinical applications.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.