Evaluating the spatiotemporal variation of Ba River water quality in the agricultural and urban watershed in the highland of Vietnam.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2024-08-01 DOI:10.1002/wer.11100
Tuan Anh Nguyen, Thi Nhan Nguyen, Van Tri Dao, Britta Schmalz, Le Luu Tran
{"title":"Evaluating the spatiotemporal variation of Ba River water quality in the agricultural and urban watershed in the highland of Vietnam.","authors":"Tuan Anh Nguyen, Thi Nhan Nguyen, Van Tri Dao, Britta Schmalz, Le Luu Tran","doi":"10.1002/wer.11100","DOIUrl":null,"url":null,"abstract":"<p><p>The Ba River in Vietnam has been facing pollution due to waste generation from agricultural and urban areas. This study focuses on evaluating the spatiotemporal variations in river water quality based on physicochemical characteristics and pesticide parameters for different seasons in 2022-2023. The results indicate that the concentrations of most parameters in the rainy season were higher than those in the early-dry and dry seasons due to the non-point sources in agricultural areas. Notably, the analysis of pesticide residue in both the rainy and dry seasons revealed low levels of chlorpyrifos (ethyl), and deltamethrin was detected in the only rainy season. The results from the hierarchical cluster analysis and water quality index show that the water quality at Ben Mong, An Khe, and Ba River Bridges was classified as moderately to highly polluted. These areas should focus on regular water quality monitoring and appropriate pollution source management. PRACTITIONER POINTS: Agriculture activities strongly affected the water quality of the Highland Ba River of Vietnam. Chlorpyrifos and deltamethrin pesticides (0.0074-0.0218 μg/L) were detected in Ba River. Non-point pollution sources significantly influenced water quality in the Ba River. Variations in river water quality mainly depend on seasons and locations. Water quality index values in rainy seasons (26-88) are lower than that in dry season (37-92).</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11100"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11100","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Ba River in Vietnam has been facing pollution due to waste generation from agricultural and urban areas. This study focuses on evaluating the spatiotemporal variations in river water quality based on physicochemical characteristics and pesticide parameters for different seasons in 2022-2023. The results indicate that the concentrations of most parameters in the rainy season were higher than those in the early-dry and dry seasons due to the non-point sources in agricultural areas. Notably, the analysis of pesticide residue in both the rainy and dry seasons revealed low levels of chlorpyrifos (ethyl), and deltamethrin was detected in the only rainy season. The results from the hierarchical cluster analysis and water quality index show that the water quality at Ben Mong, An Khe, and Ba River Bridges was classified as moderately to highly polluted. These areas should focus on regular water quality monitoring and appropriate pollution source management. PRACTITIONER POINTS: Agriculture activities strongly affected the water quality of the Highland Ba River of Vietnam. Chlorpyrifos and deltamethrin pesticides (0.0074-0.0218 μg/L) were detected in Ba River. Non-point pollution sources significantly influenced water quality in the Ba River. Variations in river water quality mainly depend on seasons and locations. Water quality index values in rainy seasons (26-88) are lower than that in dry season (37-92).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估越南高原农业和城市流域灞河水质的时空变化。
越南灞河因农业和城市地区产生的废物而面临污染。本研究的重点是根据理化特征和农药参数评估 2022-2023 年不同季节河流水质的时空变化。结果表明,由于农业区的非点源影响,雨季大部分参数的浓度高于初旱季和枯水期。值得注意的是,雨季和旱季的农药残留分析均显示毒死蜱(乙基)含量较低,只有雨季检测到溴氰菊酯。分层聚类分析和水质指数结果显示,本勐桥、安溪桥和灞河桥的水质属于中度至高度污染。这些地区应重点关注定期水质监测和适当的污染源管理。实践点:农业活动严重影响了越南高原巴河的水质。在巴河中检测到毒死蜱和溴氰菊酯农药(0.0074-0.0218 μg/L)。非点污染源对巴河水质的影响很大。河流水质的变化主要取决于季节和地点。雨季水质指数值(26-88)低于旱季(37-92)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. Removal of Fe2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. Biofilm characterization and dynamic simulation of advanced rope media reactor for the treatment of primary effluent. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1