Faheem Ahmed Khan, Azhar Ali, Di Wu, Chunjie Huang, Hamza Zulfiqar, Muhammad Ali, Bilal Ahmed, Muhammad Rizwan Yousaf, Ezi Masdia Putri, Windu Negara, Muhammad Imran, Nuruliarizki Shinta Pandupuspitasari
{"title":"Editing microbes to mitigate enteric methane emissions in livestock.","authors":"Faheem Ahmed Khan, Azhar Ali, Di Wu, Chunjie Huang, Hamza Zulfiqar, Muhammad Ali, Bilal Ahmed, Muhammad Rizwan Yousaf, Ezi Masdia Putri, Windu Negara, Muhammad Imran, Nuruliarizki Shinta Pandupuspitasari","doi":"10.1007/s11274-024-04103-x","DOIUrl":null,"url":null,"abstract":"<p><p>Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH<sub>4</sub>) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH<sub>4</sub>) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 10","pages":"300"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04103-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.