Engineering magnetic nanosystem for TRPV1 and TRPV4 channel activation.

Fang Yang, Yaqi Ma, Aoran Zhang, Junlie Yao, Shaohua Jiang, Chenglong He, Hao Peng, Guiping Ren, Yiqian Yang, Aiguo Wu
{"title":"Engineering magnetic nanosystem for TRPV1 and TRPV4 channel activation.","authors":"Fang Yang, Yaqi Ma, Aoran Zhang, Junlie Yao, Shaohua Jiang, Chenglong He, Hao Peng, Guiping Ren, Yiqian Yang, Aiguo Wu","doi":"10.1002/wnan.1987","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, physical tools for remotely stimulating mechanical force-sensitive and temperature-sensitive proteins to regulate intracellular pathways have opened up novel and exciting avenues for basic research and clinical applications. Among the numerous modes of physical stimulation, magnetic stimulation is significantly attractive for biological applications due to the advantages of depth penetration and spatial-temporally controlled transduction. Herein, the physicochemical parameters (e.g., shape, size, composition) that influence the magnetic properties of magnetic nanosystems as well as the characteristics of transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential vanilloid-4 (TRPV4) channels are systematically summarized, which offer opportunities for magnetic manipulation of cell fate in a precise and effective manner. In addition, representative regulatory applications involving magnetic nanosystem-based TRPV1 and TRPV4 channel activation are highlighted, both at the cellular level and in animal models. Furthermore, perspectives on the further development of this magnetic stimulation mode are commented on, with emphasis on scientific limitations and possible directions for exploitation. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 4","pages":"e1987"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.1987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, physical tools for remotely stimulating mechanical force-sensitive and temperature-sensitive proteins to regulate intracellular pathways have opened up novel and exciting avenues for basic research and clinical applications. Among the numerous modes of physical stimulation, magnetic stimulation is significantly attractive for biological applications due to the advantages of depth penetration and spatial-temporally controlled transduction. Herein, the physicochemical parameters (e.g., shape, size, composition) that influence the magnetic properties of magnetic nanosystems as well as the characteristics of transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential vanilloid-4 (TRPV4) channels are systematically summarized, which offer opportunities for magnetic manipulation of cell fate in a precise and effective manner. In addition, representative regulatory applications involving magnetic nanosystem-based TRPV1 and TRPV4 channel activation are highlighted, both at the cellular level and in animal models. Furthermore, perspectives on the further development of this magnetic stimulation mode are commented on, with emphasis on scientific limitations and possible directions for exploitation. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于激活 TRPV1 和 TRPV4 通道的工程磁性纳米系统。
最近,用于远程刺激机械力敏感和温度敏感蛋白质以调节细胞内通路的物理工具为基础研究和临床应用开辟了令人兴奋的新途径。在众多物理刺激模式中,磁刺激因其深度穿透和时空可控传导的优势,在生物应用中具有显著的吸引力。本文系统地总结了影响磁性纳米系统磁性能的物理化学参数(如形状、大小、成分)以及瞬态受体电位类香草素-1(TRPV1)和瞬态受体电位类香草素-4(TRPV4)通道的特性,这为精确有效地用磁力操纵细胞命运提供了机会。此外,还重点介绍了基于磁性纳米系统的 TRPV1 和 TRPV4 通道激活在细胞水平和动物模型中的代表性调控应用。此外,还对这种磁刺激模式的进一步发展前景进行了评论,重点是科学局限性和可能的开发方向。本文归类于诊断工具 > 生物传感诊断工具 > 体内纳米诊断和成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
0.00%
发文量
0
期刊最新文献
Iron-Based Nanomaterials for Modulating Tumor Microenvironment. Polymers for mRNA Delivery. Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. Recent Advances in Wearable Sweat Sensor Development. Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1