Tao Zhang, Giraso Keza Monia Kabandana, John A Terrell, Hui Chen, Chengpeng Chen
Wearable sweat sensors for detecting biochemical markers have emerged as a transformative research area, with the potential to revolutionize disease diagnosis and human health monitoring. Since 2016, a substantial body of pioneering and translational work on sweat biochemical sensors has been reported. This review aims to provide a comprehensive summary of the current state-of-the-art in the field, offering insights and perspectives on future developments. The focus is on wearable microfluidic platforms for sweat collection and delivery and the analytical chemistry applicable to wearable devices. Various microfluidic technologies, including those based on synthetic polymers, paper, textiles, and hydrogels, are discussed alongside diverse detection methods such as electrochemistry and colorimetry. Both the advantages and current limitations of these technologies are critically examined. The review concludes with our perspectives on the future of wearable sweat sensors, with the goal of inspiring new ideas, innovations, and technical advancements to further the development and practical application of these devices in promoting human health.
{"title":"Recent Advances in Wearable Sweat Sensor Development.","authors":"Tao Zhang, Giraso Keza Monia Kabandana, John A Terrell, Hui Chen, Chengpeng Chen","doi":"10.1002/wnan.70006","DOIUrl":"https://doi.org/10.1002/wnan.70006","url":null,"abstract":"<p><p>Wearable sweat sensors for detecting biochemical markers have emerged as a transformative research area, with the potential to revolutionize disease diagnosis and human health monitoring. Since 2016, a substantial body of pioneering and translational work on sweat biochemical sensors has been reported. This review aims to provide a comprehensive summary of the current state-of-the-art in the field, offering insights and perspectives on future developments. The focus is on wearable microfluidic platforms for sweat collection and delivery and the analytical chemistry applicable to wearable devices. Various microfluidic technologies, including those based on synthetic polymers, paper, textiles, and hydrogels, are discussed alongside diverse detection methods such as electrochemistry and colorimetry. Both the advantages and current limitations of these technologies are critically examined. The review concludes with our perspectives on the future of wearable sweat sensors, with the goal of inspiring new ideas, innovations, and technical advancements to further the development and practical application of these devices in promoting human health.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70006"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuan Wen, Zhang-Zhi Song, Ming-Ze Cai, Ni-Yuan Zhang, Hao-Ze Li, Yang Yang, Qian-Ting Wang, Muhammad Hamza Ghafoor, Hong-Wei An, Hao Wang
Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.
{"title":"Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.","authors":"Zhuan Wen, Zhang-Zhi Song, Ming-Ze Cai, Ni-Yuan Zhang, Hao-Ze Li, Yang Yang, Qian-Ting Wang, Muhammad Hamza Ghafoor, Hong-Wei An, Hao Wang","doi":"10.1002/wnan.70005","DOIUrl":"https://doi.org/10.1002/wnan.70005","url":null,"abstract":"<p><p>Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70005"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.
{"title":"Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.","authors":"Carolina Araujo Cirne, Marianna Foldvari","doi":"10.1002/wnan.70000","DOIUrl":"10.1002/wnan.70000","url":null,"abstract":"<p><p>Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70000"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.
{"title":"Polymers for mRNA Delivery.","authors":"Hui Wang, Yiyun Cheng","doi":"10.1002/wnan.70002","DOIUrl":"https://doi.org/10.1002/wnan.70002","url":null,"abstract":"<p><p>mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70002"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Le Wang, Xiaoting Zhang, Lulu He, Yuanyuan Wei, Yujie Zhang, Aiguo Wu, Juan Li
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME). In this review, a variety of IBNMs including iron oxide-based nanomaterials (IONMs), iron-based complex conjugates (ICCs), and iron-based single iron atom nanomaterials (ISANMs) will be introduced, and their advantages in regulating TME would also be emphasized. Besides, the recent progress of IBNMs for cancer diagnosis and treatment through the strategy of modulating TME will be summarized, including overcoming hypoxia, modulating acidity, decreasing redox species, and immunoregulation. Finally, the challenges and opportunities in this field are briefly discussed. This review is expected to contribute to the future design and development of next-generation TME-modulate IBNMs for cancer treatment.
{"title":"Iron-Based Nanomaterials for Modulating Tumor Microenvironment.","authors":"Le Wang, Xiaoting Zhang, Lulu He, Yuanyuan Wei, Yujie Zhang, Aiguo Wu, Juan Li","doi":"10.1002/wnan.70001","DOIUrl":"10.1002/wnan.70001","url":null,"abstract":"<p><p>Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME). In this review, a variety of IBNMs including iron oxide-based nanomaterials (IONMs), iron-based complex conjugates (ICCs), and iron-based single iron atom nanomaterials (ISANMs) will be introduced, and their advantages in regulating TME would also be emphasized. Besides, the recent progress of IBNMs for cancer diagnosis and treatment through the strategy of modulating TME will be summarized, including overcoming hypoxia, modulating acidity, decreasing redox species, and immunoregulation. Finally, the challenges and opportunities in this field are briefly discussed. This review is expected to contribute to the future design and development of next-generation TME-modulate IBNMs for cancer treatment.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70001"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuhang Liu, Ming Yang, Han Liu, Yingxue Hao, Dinglin Zhang
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.
类风湿性关节炎(RA)是一种慢性炎症性自身免疫性疾病,通常会引起关节疼痛、肿胀和功能障碍。药物治疗是缓解 RA 症状的主要策略,但药物治疗可能会产生一些不良反应,如恶心、呕吐、腹痛、腹泻、胃溃疡、肠道出血、高血压、高血糖、感染、疲劳和消化不良。此外,长期过量使用药物可能会导致肝肾功能障碍和血小板减少。纳米药物递送系统(NDDS)可以在异常微环境中控制有效载荷的释放,将治疗药物递送到患病部位,从而有助于减少治疗药物的副作用。微环境的异常,如pH值降低、基质金属蛋白酶(MMPs)表达增加、活性氧(ROS)浓度升高等,与RA的进展有关,但也为在RA部位实现微环境反应性治疗药物释放提供了机会。微环境响应型 NDDS 可克服上述 RA 治疗的缺点。在此,我们全面回顾了用于RA治疗的微环境反应型NDDS的最新进展,包括pH、ROS、MMP和多反应型NDDS。此外,还详细介绍了病理微环境。
{"title":"Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis.","authors":"Shuhang Liu, Ming Yang, Han Liu, Yingxue Hao, Dinglin Zhang","doi":"10.1002/wnan.2008","DOIUrl":"https://doi.org/10.1002/wnan.2008","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2008"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Early detection of disease remains a crucial challenge in medicine. Delayed diagnosis often leads to limited treatment options, increased disease progression, and unfortunately, even death in some cases. To address this, the need for rapid, cost-effective, and noninvasive diagnostic tools is paramount. In recent years, electrochemical nanosensor-based point-of-care diagnostic tools have emerged as promising tools for various fields, with significant interest in their biological and chemical applications. These tiny sensors, utilizing nanoparticles and chemical agents, can detect and monitor physical components like disease biomarkers at the nanoscale, offering a unique advantage rarely found in other diagnostic methods. This unprecedented sensitivity has made them highly sought-after tools for biological applications, particularly in disease diagnosis. This review focuses specifically on electrochemical nanosensors and their potential as diagnostic tools in medicine. We will delve into their properties, applications, current advancements, and existing limitations.
{"title":"Electrochemical Nanosensor-Based Emerging Point-Of-Care Tools: Progress and Prospects.","authors":"Jaqueline Pena-Zacarias, Md Ikhtiar Zahid, Md Nurunnabi","doi":"10.1002/wnan.2002","DOIUrl":"10.1002/wnan.2002","url":null,"abstract":"<p><p>Early detection of disease remains a crucial challenge in medicine. Delayed diagnosis often leads to limited treatment options, increased disease progression, and unfortunately, even death in some cases. To address this, the need for rapid, cost-effective, and noninvasive diagnostic tools is paramount. In recent years, electrochemical nanosensor-based point-of-care diagnostic tools have emerged as promising tools for various fields, with significant interest in their biological and chemical applications. These tiny sensors, utilizing nanoparticles and chemical agents, can detect and monitor physical components like disease biomarkers at the nanoscale, offering a unique advantage rarely found in other diagnostic methods. This unprecedented sensitivity has made them highly sought-after tools for biological applications, particularly in disease diagnosis. This review focuses specifically on electrochemical nanosensors and their potential as diagnostic tools in medicine. We will delve into their properties, applications, current advancements, and existing limitations.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2002"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain "high-value" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.
靶向蛋白降解(Targeted protein degradation, TPD)是一种创新的治疗策略,因其具有良好的发展前景而受到学术界和工业界的广泛关注。大约85%的人类蛋白质与疾病发病机制有关,FDA已经批准了大约400种针对这些疾病相关蛋白质的药物,主要是酶、转录因子和非酶蛋白。然而,现有的治疗模式无法解决某些“高价值”靶点,如c-Myc和Ras。蛋白水解靶向嵌合体(proteolysis-targeting chimeras, PROTAC)技术的出现将TPD引入了一个新的领域。靶向非药物部位的能力扩大了基于蛋白质的药物的治疗范围,尽管与生物利用度、安全性和不良副作用相关的挑战限制了它们的临床进展。纳米递送系统和新兴的TPD模式,如分子胶、溶酶体靶向嵌合体(LYTACs)、自噬系统化合物(ATTEC)和抗体PROTAC (AbTACs),已经减轻了这些限制。本文综述了TPD的最新进展,重点介绍了其在癌症治疗中的应用和益处,并对该领域的未来发展进行了展望。
{"title":"Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics.","authors":"Wutong Zhao, Yongbin Jiang, Xiufen Li, Hai Wang","doi":"10.1002/wnan.2020","DOIUrl":"https://doi.org/10.1002/wnan.2020","url":null,"abstract":"<p><p>Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain \"high-value\" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2020"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dana Wegierak, Pinunta Nittayacharn, Michaela B Cooley, Felipe M Berg, Theresa Kosmides, Dorian Durig, Michael C Kolios, Agata A Exner
Contrast-enhanced ultrasound is currently used worldwide with clinical indications in cardiology and radiology, and it continues to evolve and develop through innovative technological advancements. Clinically utilized contrast agents for ultrasound consist of hydrophobic gas microbubbles stabilized with a biocompatible shell. These agents are used commonly in echocardiography, with emerging applications in cancer diagnosis and therapy. Microbubbles are a blood pool agent with diameters between 1 and 10 μm, which precludes their use in other extravascular applications. To expand the potential use of contrast-enhanced ultrasound beyond intravascular applications, sub-micron agents, often called nanobubbles or ultra-fine bubbles, have recently emerged as a promising tool. Combining the principles of ultrasound imaging with the unique properties of nanobubbles (high concentration and small size), recent work has established their imaging potential. Contrast-enhanced ultrasound imaging using these agents continues to gain traction, with new studies establishing novel imaging applications. We highlight the recent achievements in nonlinear nanobubble contrast imaging, including a discussion on nanobubble formulations and their acoustic characteristics. Ultrasound imaging with nanobubbles is still in its early stages, but it has shown great potential in preclinical research and animal studies. We highlight unexplored areas of research where the capabilities of nanobubbles may offer new advantages. As technology advances, this technique may find applications in various areas of medicine, including cancer detection and treatment, cardiovascular imaging, and drug delivery.
{"title":"Nanobubble Contrast Enhanced Ultrasound Imaging: A Review.","authors":"Dana Wegierak, Pinunta Nittayacharn, Michaela B Cooley, Felipe M Berg, Theresa Kosmides, Dorian Durig, Michael C Kolios, Agata A Exner","doi":"10.1002/wnan.2007","DOIUrl":"10.1002/wnan.2007","url":null,"abstract":"<p><p>Contrast-enhanced ultrasound is currently used worldwide with clinical indications in cardiology and radiology, and it continues to evolve and develop through innovative technological advancements. Clinically utilized contrast agents for ultrasound consist of hydrophobic gas microbubbles stabilized with a biocompatible shell. These agents are used commonly in echocardiography, with emerging applications in cancer diagnosis and therapy. Microbubbles are a blood pool agent with diameters between 1 and 10 μm, which precludes their use in other extravascular applications. To expand the potential use of contrast-enhanced ultrasound beyond intravascular applications, sub-micron agents, often called nanobubbles or ultra-fine bubbles, have recently emerged as a promising tool. Combining the principles of ultrasound imaging with the unique properties of nanobubbles (high concentration and small size), recent work has established their imaging potential. Contrast-enhanced ultrasound imaging using these agents continues to gain traction, with new studies establishing novel imaging applications. We highlight the recent achievements in nonlinear nanobubble contrast imaging, including a discussion on nanobubble formulations and their acoustic characteristics. Ultrasound imaging with nanobubbles is still in its early stages, but it has shown great potential in preclinical research and animal studies. We highlight unexplored areas of research where the capabilities of nanobubbles may offer new advantages. As technology advances, this technique may find applications in various areas of medicine, including cancer detection and treatment, cardiovascular imaging, and drug delivery.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2007"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huaibin Yu, Yafang Lu, Zhuorong Miao, Zhengbao Zha, Shaoqin Liu
Adjuvants augment the immunogenicity of vaccines when co-administered with messenger RNA (mRNA) antigens. In recent years, nanotechnology and nanoscience have seen significant growth, resulting in the discovery of synthetic small molecule compounds, natural extracts, and nanomaterials with self-adjuvant properties for nano delivery. The materials exhibit robust immune activity and efficiently activate various innate immune signaling pathways. Moreover, they possess a comparatively simple chemical composition in contrast to conventional adjuvants. This significantly streamlines the manufacturing process of vaccine formulations. Therefore, these self-adjuvant materials theoretically improve the reproducibility of adjuvant production and quality control. Herein, this review summarizes the current research and development progress of mRNA adjuvants, with a specific focus on various types of mRNA adjuvants, notably self-adjuvant nanomaterials. It discusses the current research status on a range of diseases and investigates the potential development of mRNA vaccine adjuvants.
{"title":"Development of Self-Adjuvants in mRNA Vaccine and Its Application in Disease Prevention and Treatment.","authors":"Huaibin Yu, Yafang Lu, Zhuorong Miao, Zhengbao Zha, Shaoqin Liu","doi":"10.1002/wnan.2011","DOIUrl":"https://doi.org/10.1002/wnan.2011","url":null,"abstract":"<p><p>Adjuvants augment the immunogenicity of vaccines when co-administered with messenger RNA (mRNA) antigens. In recent years, nanotechnology and nanoscience have seen significant growth, resulting in the discovery of synthetic small molecule compounds, natural extracts, and nanomaterials with self-adjuvant properties for nano delivery. The materials exhibit robust immune activity and efficiently activate various innate immune signaling pathways. Moreover, they possess a comparatively simple chemical composition in contrast to conventional adjuvants. This significantly streamlines the manufacturing process of vaccine formulations. Therefore, these self-adjuvant materials theoretically improve the reproducibility of adjuvant production and quality control. Herein, this review summarizes the current research and development progress of mRNA adjuvants, with a specific focus on various types of mRNA adjuvants, notably self-adjuvant nanomaterials. It discusses the current research status on a range of diseases and investigates the potential development of mRNA vaccine adjuvants.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2011"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}