Yacong Fan, Jing Du, Wentao Zhao*, Xiaofei Ma and Xi Yu*,
{"title":"Molecular Insights into Marcuss Theory: An Ab Initio Quantum Chemistry Computational Lab Practice for Charge Transfer Kinetics Pedagogy","authors":"Yacong Fan, Jing Du, Wentao Zhao*, Xiaofei Ma and Xi Yu*, ","doi":"10.1021/acs.jchemed.4c0028610.1021/acs.jchemed.4c00286","DOIUrl":null,"url":null,"abstract":"<p >Charge transfer (CT) is a fundamental process in various chemical systems, and its kinetics, depicted by Marcus theory, is one of the central parts of chemistry education. While the practical demonstration of charge transfer mechanisms and kinetics in laboratories can be challenging, the microscopic origins of such processes are even more complex to observe. We introduce an ab initio quantum chemistry computation practice to unravel the intricacies of CT at the molecular scale. Using the “Koopmans’ theorem–energy splitting in dimer” (KT-ESD) method and the 4-point method, the electronic coupling and reorganization energy (ROE) have been obtained in series of model molecules. Through the analysis of the electronic coupling and ROE, we discern the pivotal factors of molecular structure impacting charge transfer rates. Particularly, the results from this practice align with cutting edge experimental measurements from single-molecule conducting and photoelectron spectroscopy. This computational lab module provides a valuable instrument for comprehending charge transfer rates, thereby fostering enhanced learning experiences across major chemistry courses such as kinetics, physical chemistry, quantum chemistry, and organic chemistry.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 8","pages":"3418–3427 3418–3427"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00286","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Charge transfer (CT) is a fundamental process in various chemical systems, and its kinetics, depicted by Marcus theory, is one of the central parts of chemistry education. While the practical demonstration of charge transfer mechanisms and kinetics in laboratories can be challenging, the microscopic origins of such processes are even more complex to observe. We introduce an ab initio quantum chemistry computation practice to unravel the intricacies of CT at the molecular scale. Using the “Koopmans’ theorem–energy splitting in dimer” (KT-ESD) method and the 4-point method, the electronic coupling and reorganization energy (ROE) have been obtained in series of model molecules. Through the analysis of the electronic coupling and ROE, we discern the pivotal factors of molecular structure impacting charge transfer rates. Particularly, the results from this practice align with cutting edge experimental measurements from single-molecule conducting and photoelectron spectroscopy. This computational lab module provides a valuable instrument for comprehending charge transfer rates, thereby fostering enhanced learning experiences across major chemistry courses such as kinetics, physical chemistry, quantum chemistry, and organic chemistry.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.