Cover Picture: Unveiling the Degradation Mechanism of Sodium Ion Batteries Based on Na4Fe3(PO4)2P2O7 Cathode and Hard Carbon Anode Suggests Anode Particle Size Reduction for Cycling Stability (Batteries & Supercaps 8/2024)

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-08-12 DOI:10.1002/batt.202480803
Shubham Lochab, Sagar Bharathraj, K. Subramanya Mayya, Prabeer Barpanda, Shashishekar P. Adiga
{"title":"Cover Picture: Unveiling the Degradation Mechanism of Sodium Ion Batteries Based on Na4Fe3(PO4)2P2O7 Cathode and Hard Carbon Anode Suggests Anode Particle Size Reduction for Cycling Stability (Batteries & Supercaps 8/2024)","authors":"Shubham Lochab,&nbsp;Sagar Bharathraj,&nbsp;K. Subramanya Mayya,&nbsp;Prabeer Barpanda,&nbsp;Shashishekar P. Adiga","doi":"10.1002/batt.202480803","DOIUrl":null,"url":null,"abstract":"<p><b>The Cover Feature</b> shows sodium-ion batteries—a compelling alternative to lithium-ion counterparts due to sodium‘s abundant presence on Earth. Unlike lithium, their materials can be sourced without geopolitical concerns. Yet, their advance has been hindered by a poor life cycle. Electrochemical analysis, materials characterization and modeling pinpointed the root cause of capacity decay: sluggish sodium diffusion triggers anode overpotential and cathode material loss. Shrinking anode particle size enhances both capacity and longevity. With cost-effective materials and streamlined processes, sodium-ion batteries promise a compelling solution for stationary storage needs. More information can be found in the Research Article by S. P. Adiga and co-workers (DOI: 10.1002/batt.202400025).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 8","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202480803","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202480803","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The Cover Feature shows sodium-ion batteries—a compelling alternative to lithium-ion counterparts due to sodium‘s abundant presence on Earth. Unlike lithium, their materials can be sourced without geopolitical concerns. Yet, their advance has been hindered by a poor life cycle. Electrochemical analysis, materials characterization and modeling pinpointed the root cause of capacity decay: sluggish sodium diffusion triggers anode overpotential and cathode material loss. Shrinking anode particle size enhances both capacity and longevity. With cost-effective materials and streamlined processes, sodium-ion batteries promise a compelling solution for stationary storage needs. More information can be found in the Research Article by S. P. Adiga and co-workers (DOI: 10.1002/batt.202400025).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封面图片:揭示基于 Na4Fe3(PO4)2P2O7 阴极和硬碳阳极的钠离子电池的降解机制,建议减小阳极颗粒尺寸以提高循环稳定性(《电池与超级电容器》,8/2024)
封面特写展示的是钠离子电池--由于钠在地球上的大量存在,它成为锂离子电池的替代品。与锂电池不同,钠离子电池的材料来源无需担心地缘政治问题。然而,它们的发展却一直受制于较差的生命周期。电化学分析、材料表征和建模找出了容量衰减的根本原因:缓慢的钠扩散会引发阳极过电位和阴极材料损耗。缩小阳极颗粒尺寸可提高容量和寿命。凭借具有成本效益的材料和简化的工艺,钠离子电池有望成为满足固定存储需求的令人信服的解决方案。更多信息,请参阅 S. P. Adiga 及其合作者的研究文章(英文版)。Adiga 及其合作者的研究文章中(DOI: 10.1002/batt.202400025)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025) Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025) Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025) Cover Picture: Automated Robotic Cell Fabrication Technology for Stacked-Type Lithium-Oxygen Batteries (Batteries & Supercaps 12/2024) Cover Feature: Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries (Batteries & Supercaps 12/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1