{"title":"Mechanical strain effect on the optoelectronic properties and photocatalysis applications of layered AlN/GaN nanoheterostructure","authors":"Nitika, Sandeep Arora, Dharamvir Singh Ahlawat","doi":"10.1007/s00894-024-06103-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The aim of this work is to use first principles calculations to examine the effects of different mechanical strains on the optoelectronic and photocatalytic capabilities of the 2D/2D nanoheterostructure of AlN/GaN. By utilizing the lmBJ (Meta-GGA) and PBEsol (GGA) functional, the bandgap of the nanoheterostructure is calculated and found to be 4.89 eV and 3.24 eV. Simulated 2D AlN/GaN nanoheterostructure exhibits exceptional optical and electronic characteristics under applied biaxial tensile and compressive strains. The band gap changes from 4.89 to 3.77 eV, while the energy gap nature transitions from direct to indirect during tensile strain fluctuations of 0% to 8%. Strain is also found to have a significant effect on the optical absorption peaks. And a 0–8% rise in tensile strain causes the initial absorption peak of the 2D AlN/GaN nanoheterostructure to shift from 4.88 to 4.20 eV, which results in a 14% red shift in photon energy for every 2% change in strain. Furthermore, the optimum bandgap and band edge positions of the 2D AlN/GaN nanoheterostructure enable the water redox process to produce hydrogen and oxygen for wide range of pH. Thus, modification via strain may be an effective method for altering the optical as well as electronic characteristics of a 2D AlN/GaN nanoheterostructure, and this study may pave the way for new applications of this material in optoelectronic devices in the future.</p><h3>Methods</h3><p>In the current work, density functional theory is used to explore every attribute of the 2D AlN/GaN nanoheterostructure. To characterize the electronic exchange–correlation, we used the PBEsol functional. In order to prevent any interlayer contact between periodicity of images, a vacuum is produced along the <i>z</i>-direction of approximately 10 Å. To increase the precision of bandgap prediction, the electronic and optical characteristics were computed using the meta-GGA lmBJ functional. To account for interlayer van der Waals interactions, nanoheterostructure computations were performed using the DFT-D3 functional.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06103-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
The aim of this work is to use first principles calculations to examine the effects of different mechanical strains on the optoelectronic and photocatalytic capabilities of the 2D/2D nanoheterostructure of AlN/GaN. By utilizing the lmBJ (Meta-GGA) and PBEsol (GGA) functional, the bandgap of the nanoheterostructure is calculated and found to be 4.89 eV and 3.24 eV. Simulated 2D AlN/GaN nanoheterostructure exhibits exceptional optical and electronic characteristics under applied biaxial tensile and compressive strains. The band gap changes from 4.89 to 3.77 eV, while the energy gap nature transitions from direct to indirect during tensile strain fluctuations of 0% to 8%. Strain is also found to have a significant effect on the optical absorption peaks. And a 0–8% rise in tensile strain causes the initial absorption peak of the 2D AlN/GaN nanoheterostructure to shift from 4.88 to 4.20 eV, which results in a 14% red shift in photon energy for every 2% change in strain. Furthermore, the optimum bandgap and band edge positions of the 2D AlN/GaN nanoheterostructure enable the water redox process to produce hydrogen and oxygen for wide range of pH. Thus, modification via strain may be an effective method for altering the optical as well as electronic characteristics of a 2D AlN/GaN nanoheterostructure, and this study may pave the way for new applications of this material in optoelectronic devices in the future.
Methods
In the current work, density functional theory is used to explore every attribute of the 2D AlN/GaN nanoheterostructure. To characterize the electronic exchange–correlation, we used the PBEsol functional. In order to prevent any interlayer contact between periodicity of images, a vacuum is produced along the z-direction of approximately 10 Å. To increase the precision of bandgap prediction, the electronic and optical characteristics were computed using the meta-GGA lmBJ functional. To account for interlayer van der Waals interactions, nanoheterostructure computations were performed using the DFT-D3 functional.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.