Pub Date : 2024-11-27DOI: 10.1007/s00894-024-06208-4
E. S. Eyube, C. R. Makasson, E. Omugbe, C. A. Onate, E. P. Inyang, A. M. Tahir, J. U. Ojar, S. D. Najoji
Context
This work presents analytical expressions for ro-vibrational energy models of diatomic molecules by introducing fractional parameters to improve molecular interaction analysis. Thermodynamic models, including Helmholtz free energy, mean thermal energy, entropy, and isochoric heat capacity, are formulated for diatomic molecules such as CO (X 1∑+), Cs2 (3 3∑g+), K2 (X 1∑g+), 7Li2 (6 1Πu), 7Li2 (1 3Δg), Na2 (5 1Δg), Na2 (C(2) 1Πu), and NaK (c 3∑+). The incorporation of fractional parameters improves predictive accuracy for vibrational energies, as shown by reductions in percentage average absolute deviations from 0.5511 to 0.2185% for CO. Findings indicate a linear decrease in Helmholtz free energy and an initial increase in heat capacity with rising temperature, providing valuable insights for characterizing materials and optimizing molecular processes in chemistry, material science, and chemical engineering. The results obtained show strong agreement with established theoretical predictions and experimental data, validating the robustness and applicability of the proposed models.
Methods
The energy equations are derived by solving the radial Schrödinger equation for a variant of the Tietz potential using the generalized fractional Nikiforov-Uvarov (GFNU) method in addition to a Pekeris-type approximation for the centrifugal term. The canonical partition function is derived using the modified Poisson series formula, which serves as a basis for calculating other thermodynamic functions. All computations are carried out using MATLAB programming software.
{"title":"Improved energy equations and thermal functions for diatomic molecules: a generalized fractional derivative approach","authors":"E. S. Eyube, C. R. Makasson, E. Omugbe, C. A. Onate, E. P. Inyang, A. M. Tahir, J. U. Ojar, S. D. Najoji","doi":"10.1007/s00894-024-06208-4","DOIUrl":"10.1007/s00894-024-06208-4","url":null,"abstract":"<div><h3>Context</h3><p>This work presents analytical expressions for ro-vibrational energy models of diatomic molecules by introducing fractional parameters to improve molecular interaction analysis. Thermodynamic models, including Helmholtz free energy, mean thermal energy, entropy, and isochoric heat capacity, are formulated for diatomic molecules such as CO (X <sup>1</sup>∑<sup>+</sup>), Cs<sub>2</sub> (3 <sup>3</sup>∑<sub>g</sub><sup>+</sup>), K<sub>2</sub> (X <sup>1</sup>∑<sub>g</sub><sup>+</sup>), <sup>7</sup>Li<sub>2</sub> (6 <sup>1</sup>Π<sub>u</sub>), <sup>7</sup>Li<sub>2</sub> (1 <sup>3</sup>Δ<sub>g</sub>), Na<sub>2</sub> (5 <sup>1</sup>Δ<sub>g</sub>), Na<sub>2</sub> (C(2) <sup>1</sup>Π<sub>u</sub>), and NaK (c <sup>3</sup>∑<sup>+</sup>). The incorporation of fractional parameters improves predictive accuracy for vibrational energies, as shown by reductions in percentage average absolute deviations from 0.5511 to 0.2185% for CO. Findings indicate a linear decrease in Helmholtz free energy and an initial increase in heat capacity with rising temperature, providing valuable insights for characterizing materials and optimizing molecular processes in chemistry, material science, and chemical engineering. The results obtained show strong agreement with established theoretical predictions and experimental data, validating the robustness and applicability of the proposed models.</p><h3>Methods</h3><p>The energy equations are derived by solving the radial Schrödinger equation for a variant of the Tietz potential using the generalized fractional Nikiforov-Uvarov (GFNU) method in addition to a Pekeris-type approximation for the centrifugal term. The canonical partition function is derived using the modified Poisson series formula, which serves as a basis for calculating other thermodynamic functions. All computations are carried out using MATLAB programming software.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00894-024-06208-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat-shock proteins (HSPs), particularly HSP90, are critical molecular chaperones that maintain protein stability, especially in cancer cells. Elevated HSP90 levels in tumors aid in oncogenic protein stabilization. This study focuses on developing potent, selective HSP90 inhibitors to disrupt its chaperone function, targeting cancer cell survival. Using a de novo hybridization approach, we designed novel inhibitors by integrating structural fragments from a known HSP90-binding drug, leading to the creation of hybrid compounds C1, C2, and C3. A 300 ns molecular dynamics simulation of each system revealed that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound, MEY. RMSD, RMSF, Rg, SASA, and MM-PBSA metrics supported these findings. DCCM and FEL analyses confirmed that the inhibitors did not alter HSP90’s initial configuration. Further DFT calculations with the B3LYP/6–311 + + (d,p) basis set were conducted to evaluate frontier molecular orbitals, MEP surfaces, ELF, LOL maps, TDOS and PDOS. The results indicated that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound MEY. These findings affirm the potential of C1, C2, and C3 as new anti-cancer therapies. Our approach demonstrates a promising strategy for developing selective HSP90 inhibitors that maintain the protein’s functional integrity while disrupting its oncogenic role, paving the way for further preclinical evaluation of these novel compounds.
Maestro 11.8, Discovery Studio Visualizer, Gromacs-2023, Gaussian 16, and online platforms like SwissADME and ProTox-II were utilized. Fragments generated from eight known HSP90-binding drugs were subjected to SP-docking, leading to 170 fragments. The highest-scoring fragments were merged using the breed panel to create new HSP90 inhibitors. XP-docking and ADMET analyses identified C1, C2, and C3 as the most promising candidates. These compounds were selected for a 300 ns dynamic simulation and subsequent DFT calculations.
{"title":"Insight into the structural and dynamic properties of novel HSP90 inhibitors through DFT calculations and molecular dynamics simulations","authors":"Ibtissam Saouli, Rahma Abrane, Chahra Bidjou-Haiour, Sameh Boudiba","doi":"10.1007/s00894-024-06214-6","DOIUrl":"10.1007/s00894-024-06214-6","url":null,"abstract":"<p>Heat-shock proteins (HSPs), particularly HSP90, are critical molecular chaperones that maintain protein stability, especially in cancer cells. Elevated HSP90 levels in tumors aid in oncogenic protein stabilization. This study focuses on developing potent, selective HSP90 inhibitors to disrupt its chaperone function, targeting cancer cell survival. Using a de novo hybridization approach, we designed novel inhibitors by integrating structural fragments from a known HSP90-binding drug, leading to the creation of hybrid compounds C1, C2, and C3. A 300 ns molecular dynamics simulation of each system revealed that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound, MEY. RMSD, RMSF, Rg, SASA, and MM-PBSA metrics supported these findings. DCCM and FEL analyses confirmed that the inhibitors did not alter HSP90’s initial configuration. Further DFT calculations with the B3LYP/6–311 + + (d,p) basis set were conducted to evaluate frontier molecular orbitals, MEP surfaces, ELF, LOL maps, TDOS and PDOS. The results indicated that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound MEY. These findings affirm the potential of C1, C2, and C3 as new anti-cancer therapies. Our approach demonstrates a promising strategy for developing selective HSP90 inhibitors that maintain the protein’s functional integrity while disrupting its oncogenic role, paving the way for further preclinical evaluation of these novel compounds.</p><p>Maestro 11.8, Discovery Studio Visualizer, Gromacs-2023, Gaussian 16, and online platforms like SwissADME and ProTox-II were utilized. Fragments generated from eight known HSP90-binding drugs were subjected to SP-docking, leading to 170 fragments. The highest-scoring fragments were merged using the breed panel to create new HSP90 inhibitors. XP-docking and ADMET analyses identified C1, C2, and C3 as the most promising candidates. These compounds were selected for a 300 ns dynamic simulation and subsequent DFT calculations.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1007/s00894-024-06193-8
Dipali N. Lande, Shridhar P. Gejji, Rajeev K. Pathak
Context
Oxirene, surmised to exist in the interstellar medium, was synthesized in the laboratory only recently. The present study investigates theoretically to what extent the two exotic molecules, oxirene and its thia-analogue thiirene, are capable of forming molecular self-aggregates and undergo micro-hydration under cooperative hydrogen bonding as the tour de force. Cogent molecular descriptors, such as binding energies for cluster formation, molecular electrostatic potential (MESP), effective atomic charges, infrared spectroscopic response, criticality profiles from the quantum theory of atoms in molecules (QTAIM), hydrogen bond energies, and reduced density gradient (RDG) maps identifying non-covalent interactions (NCI), all in unison confirm theoretically the existence and characterize the aggregates. In particular, infrared spectra display frequency down-shifts for the hydrogen bonded C–H vibrations in aggregates and for O–H in hydrated complexes. This work carried out in silico, should furnish credible tenets toward identification of oxirene and thiirene self-aggregates and their micro-hydrated complexes that potentially exist in the interstellar medium.
Method
By means of a molecular modeling program AVOGADRO, a multitude of initial-guess clusters under universal force field (UFF) were generated, which were subsequently optimized employing the GAUSSIAN16 suite of programs with the tightest convergence criterion, at the ωB97xD level of density functional theory embodying long-range dispersion effects, in conjunction with a reliable basis set 6–311 ++ G(2d,2p). The versatile package GAUSSVIEW yields the structures, vibrational frequencies, and criticality information, respectively.
{"title":"Constructing, in silico, molecular self-aggregates and micro-hydrated complexes of oxirene and thiirene","authors":"Dipali N. Lande, Shridhar P. Gejji, Rajeev K. Pathak","doi":"10.1007/s00894-024-06193-8","DOIUrl":"10.1007/s00894-024-06193-8","url":null,"abstract":"<div><h3>Context</h3><p>Oxirene, surmised to exist in the interstellar medium, was synthesized in the laboratory only recently. The present study investigates theoretically to what extent the two exotic molecules, oxirene and its thia-analogue thiirene, are capable of forming molecular self-aggregates and undergo micro-hydration under cooperative hydrogen bonding as the <i>tour de force</i>. Cogent molecular descriptors, such as binding energies for cluster formation, molecular electrostatic potential (MESP), effective atomic charges, infrared spectroscopic response, criticality profiles from the quantum theory of atoms in molecules (QTAIM), hydrogen bond energies, and reduced density gradient (RDG) maps identifying non-covalent interactions (NCI), all in unison confirm theoretically the existence and characterize the aggregates. In particular, infrared spectra display frequency down-shifts for the hydrogen bonded C–H vibrations in aggregates and for O–H in hydrated complexes. This work carried out <i>in silico</i>, should furnish credible tenets toward identification of oxirene and thiirene self-aggregates and their micro-hydrated complexes that potentially exist in the interstellar medium.</p><h3>Method</h3><p>By means of a molecular modeling program AVOGADRO, a multitude of initial-guess clusters under universal force field (UFF) were generated, which were subsequently optimized employing the GAUSSIAN16 suite of programs with the tightest convergence criterion, at the ωB97xD level of density functional theory embodying long-range dispersion effects, in conjunction with a reliable basis set 6–311 ++ G(2d,2p). The versatile package GAUSSVIEW yields the structures, vibrational frequencies, and criticality information, respectively.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1007/s00894-024-06223-5
Mudar Ahmed Abdulsattar
Context
The reaction of NO2 with pristine and Pt-doped SnS2 surfaces is investigated theoretically and compared with the experiment. Transition state theory formalism for gas sensors is adopted to present NO2 gas sensing. The dissociation temperature at approximately 150 °C is found to be of great importance in NO2 reactions. The adsorption and transition states of NO2 with pristine and Pt-doped SnS2 are calculated. Pt doping includes 0.5, 1, and 1.5% in accordance with available experimental results. The variation of thermodynamic quantities such as Gibbs free energy with Pt concentration and temperature is calculated. Transition state theory parameters that are suitable for the present sensor are determined. The results include the variation in response time with temperature, Pt concentration, and NO2 concentration. Response and response time as a function of temperature are rarely investigated in theoretical calculations, which is one of the advantages of the present study. Optimum response temperature and Pt concentration are found. The results agree with available experimental results.
Methods
Density functional theory at the B3LYP level optimize molecular structures. 6-311G** basis set is used for all elements except Sn and Pt treated using SDD basis set. Gaussian 09 program and its facilities are used to perform present optimizations.
{"title":"NO2 properties that affect its reaction with pristine and Pt-doped SnS2: a gas sensor study","authors":"Mudar Ahmed Abdulsattar","doi":"10.1007/s00894-024-06223-5","DOIUrl":"10.1007/s00894-024-06223-5","url":null,"abstract":"<div><h3>Context</h3><p>The reaction of NO<sub>2</sub> with pristine and Pt-doped SnS<sub>2</sub> surfaces is investigated theoretically and compared with the experiment. Transition state theory formalism for gas sensors is adopted to present NO<sub>2</sub> gas sensing. The dissociation temperature at approximately 150 °C is found to be of great importance in NO<sub>2</sub> reactions. The adsorption and transition states of NO<sub>2</sub> with pristine and Pt-doped SnS<sub>2</sub> are calculated. Pt doping includes 0.5, 1, and 1.5% in accordance with available experimental results. The variation of thermodynamic quantities such as Gibbs free energy with Pt concentration and temperature is calculated. Transition state theory parameters that are suitable for the present sensor are determined. The results include the variation in response time with temperature, Pt concentration, and NO<sub>2</sub> concentration. Response and response time as a function of temperature are rarely investigated in theoretical calculations, which is one of the advantages of the present study. Optimum response temperature and Pt concentration are found. The results agree with available experimental results.</p><h3>Methods</h3><p>Density functional theory at the B3LYP level optimize molecular structures. 6-311G** basis set is used for all elements except Sn and Pt treated using SDD basis set. Gaussian 09 program and its facilities are used to perform present optimizations.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1007/s00894-024-06203-9
Angie C. Forero‑Girón, Soledad Gutiérrez‑Oliva, Camilo López‑Alarcón, Barbara Herrera, Margarita E. Aliaga
{"title":"Correction to: Computational study of the supramolecular complexation of azocompounds with cucurbit[7]uril: effects on the production and release of free radicals","authors":"Angie C. Forero‑Girón, Soledad Gutiérrez‑Oliva, Camilo López‑Alarcón, Barbara Herrera, Margarita E. Aliaga","doi":"10.1007/s00894-024-06203-9","DOIUrl":"10.1007/s00894-024-06203-9","url":null,"abstract":"","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1007/s00894-024-06221-7
Aline Carvalho Baruqui, Regina Sandra Veiga Nascimento, Marco Antonio Chaer Nascimento
Context
Drilling fluids must reduce the coefficient of friction between the drilling equipment and the drilled rock or well casing. Friction forces become particularly relevant in drilling with a high angle gain, in which cases oil-based fluids are generally used. The latter are highly lubricating, but harmful to the environment. For environmental and economic reasons, there is great interest in the development of new additives that enable the use of water-based drilling fluids in all phases of well drilling. Preliminary experimental results show that there is a synergistic effect between glyceryl monooleate (GMO), normally used as lubricant additive, and carboxymethyl cellulose (CMC), a polysaccharide normally used in water-based drilling fluids as a rheological modifier, resulting in extremely low friction coefficients. This work aimed to clarify, through theoretical calculations, the interaction between CMC and GMO, as well as their role in reducing the coefficient of friction between the drilling equipment and the drilled rock when added to water-based fluids.
Methods
Calculations based on density functional theory (DFT) were used to predict which, CMC or GMO, preferentially binds to the metal surface. The interactions between the polysaccharide and the surfactant were studied through a combination of classical molecular dynamics and DFT calculations. Finally, dynamic calculations were carried out involving fragments of the polysaccharide, the surfactant and hematite (Fe2O3) representing the metal surface, since in the experimental conditions the metal surface will be covered by a primary oxide layer. The results pointed to the preferential binding of CMC to hematite. Regarding the interaction between polymer and surfactant, it was found that the polar part of the GMO interacts with the CMC through hydrogen bonds while the nonpolar carbon chain remains close to the polymer due to hydrophobic interactions. Molecular dynamics calculations showed that GMO increases the binding energy of CMC to hematite and also that this increase in the binding energy is highly influenced by electrostatic interactions.
{"title":"Theoretical study of the synergistic effect between glyceryl monooleate lubricant and carboxymethylcellulose in reducing the coefficient of friction of water-based drilling fluids","authors":"Aline Carvalho Baruqui, Regina Sandra Veiga Nascimento, Marco Antonio Chaer Nascimento","doi":"10.1007/s00894-024-06221-7","DOIUrl":"10.1007/s00894-024-06221-7","url":null,"abstract":"<div><h3>Context</h3><p>Drilling fluids must reduce the coefficient of friction between the drilling equipment and the drilled rock or well casing. Friction forces become particularly relevant in drilling with a high angle gain, in which cases oil-based fluids are generally used. The latter are highly lubricating, but harmful to the environment. For environmental and economic reasons, there is great interest in the development of new additives that enable the use of water-based drilling fluids in all phases of well drilling. Preliminary experimental results show that there is a synergistic effect between glyceryl monooleate (GMO), normally used as lubricant additive, and carboxymethyl cellulose (CMC), a polysaccharide normally used in water-based drilling fluids as a rheological modifier, resulting in extremely low friction coefficients. This work aimed to clarify, through theoretical calculations, the interaction between CMC and GMO, as well as their role in reducing the coefficient of friction between the drilling equipment and the drilled rock when added to water-based fluids.</p><h3>Methods</h3><p>Calculations based on density functional theory (DFT) were used to predict which, CMC or GMO, preferentially binds to the metal surface. The interactions between the polysaccharide and the surfactant were studied through a combination of classical molecular dynamics and DFT calculations. Finally, dynamic calculations were carried out involving fragments of the polysaccharide, the surfactant and hematite (Fe<sub>2</sub>O<sub>3</sub>) representing the metal surface, since in the experimental conditions the metal surface will be covered by a primary oxide layer. The results pointed to the preferential binding of CMC to hematite. Regarding the interaction between polymer and surfactant, it was found that the polar part of the GMO interacts with the CMC through hydrogen bonds while the nonpolar carbon chain remains close to the polymer due to hydrophobic interactions. Molecular dynamics calculations showed that GMO increases the binding energy of CMC to hematite and also that this increase in the binding energy is highly influenced by electrostatic interactions.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00894-024-06221-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1007/s00894-024-06182-x
Ming-Ran Du, Yan Huang, Chang-Yu Chen, Tian-De Xuan, Wei-Wei Li, Liang Yuan, Bing-Xu Zheng
Context
In order to obtain environmentally friendly emulsion explosives formulations with higher power, based on zero oxygen balance, formulations of titanium hydride (TiH2)—high-power emulsion explosives were optimally designed. The results show that the zero oxygen balance formulation produces almost no toxic and harmful gases. The detonation temperature and detonation heat are increased. And the detonation volume decreases along with the increase in the content of TiH2. Zero oxygen balance formulation can effectively enhance the explosive power of TiH2-type high-power emulsion explosives compared to traditional formulations while improving its environmental friendliness and safety. This paper provides a basis for further development of the optimal brisance and environmentally friendly explosive formulations.
Methods
The principle of zero oxygen balance was applied to theoretically design the formulations of titanium hydride (TiH2)—high-power emulsion explosives. To find a zero-oxygen balanced formulation with the best detonation performance, Hess’s Law and Cast’s Law were used to calculate the detonation parameters such as detonation heat and detonation temperature. Also, the B-W method was used to anticipate the detonation products