Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of photochemistry and photobiology. B, Biology Pub Date : 2024-08-08 DOI:10.1016/j.jphotobiol.2024.113007
Liubov E. Shimolina , Aleksandra E. Khlynova , Aleksander A. Gulin , Vadim V. Elagin , Margarita V. Gubina , Pavel A. Bureev , Petr S. Sherin , Marina K. Kuimova , Marina V. Shirmanova
{"title":"Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo","authors":"Liubov E. Shimolina ,&nbsp;Aleksandra E. Khlynova ,&nbsp;Aleksander A. Gulin ,&nbsp;Vadim V. Elagin ,&nbsp;Margarita V. Gubina ,&nbsp;Pavel A. Bureev ,&nbsp;Petr S. Sherin ,&nbsp;Marina K. Kuimova ,&nbsp;Marina V. Shirmanova","doi":"10.1016/j.jphotobiol.2024.113007","DOIUrl":null,"url":null,"abstract":"<div><p>Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both <em>in cellulo</em> and <em>in vivo</em>. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"259 ","pages":"Article 113007"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424001672","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both in cellulo and in vivo. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用光二氮嗪的光动力疗法可增加细胞和体内癌细胞膜的微粘度。
光动力疗法(PDT)是一种微创癌症治疗方法,其作用之一是氧化膜脂。然而,人们对光动力疗法过程中脂质膜生物物理特性的变化还知之甚少。在这项工作中,我们研究了光动力疗法对培养中的癌细胞和肿瘤异种移植细胞膜微粘度的影响。利用荧光寿命成像显微镜(FLIM)和粘度敏感转子 BODIPY2 观察膜微粘度。研究发现,使用基于氯 e6 的光敏剂 Photoditazine 的光导放疗可在细胞内和体内快速、稳定地提高膜微粘度。导致微粘度增加的机制是活性氧引起的脂质过氧化,导致膜中磷脂酰胆碱和不饱和脂肪酸的减少。我们的研究结果表明,微粘度增加是导致光动力疗法过程中肿瘤细胞损伤的一个重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
期刊最新文献
Milk-derived exosome-loaded SS31 as a novel strategy to mitigate UV-induced photodamage in skin Synergistic mechanism of magneto-optical sensing mediated by magnetic response protein Amb0994 and LOV-like protein Amb2291 in Magnetospirillum magneticum AMB-1 Vicenin-2 reduces inflammation and apoptosis to relieve skin photoaging via suppressing GSK3β Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1