SegVir: Reconstruction of Complete Segmented RNA Viral Genomes from Metatranscriptomes.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biology and evolution Pub Date : 2024-08-02 DOI:10.1093/molbev/msae171
Xubo Tang, Jiayu Shang, Guowei Chen, Kei Hang Katie Chan, Mang Shi, Yanni Sun
{"title":"SegVir: Reconstruction of Complete Segmented RNA Viral Genomes from Metatranscriptomes.","authors":"Xubo Tang, Jiayu Shang, Guowei Chen, Kei Hang Katie Chan, Mang Shi, Yanni Sun","doi":"10.1093/molbev/msae171","DOIUrl":null,"url":null,"abstract":"<p><p>Segmented RNA viruses are a complex group of RNA viruses with multisegment genomes. Reconstructing complete segmented viruses is crucial for advancing our understanding of viral diversity, evolution, and public health impact. Using metatranscriptomic data to identify known and novel segmented viruses has sped up the survey of segmented viruses in various ecosystems. However, the high genetic diversity and the difficulty in binning complete segmented genomes present significant challenges in segmented virus reconstruction. Current virus detection tools are primarily used to identify nonsegmented viral genomes. This study presents SegVir, a novel tool designed to identify segmented RNA viruses and reconstruct their complete genomes from complex metatranscriptomes. SegVir leverages both close and remote homology searches to accurately detect conserved and divergent viral segments. Additionally, we introduce a new method that can evaluate the genome completeness and conservation based on gene content. Our evaluations on simulated datasets demonstrate SegVir's superior sensitivity and precision compared to existing tools. Moreover, in experiments using real data, we identified some virus segments missing in the NCBI database, underscoring SegVir's potential to enhance viral metagenome analysis. The source code and supporting data of SegVir are available via https://github.com/HubertTang/SegVir.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae171","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Segmented RNA viruses are a complex group of RNA viruses with multisegment genomes. Reconstructing complete segmented viruses is crucial for advancing our understanding of viral diversity, evolution, and public health impact. Using metatranscriptomic data to identify known and novel segmented viruses has sped up the survey of segmented viruses in various ecosystems. However, the high genetic diversity and the difficulty in binning complete segmented genomes present significant challenges in segmented virus reconstruction. Current virus detection tools are primarily used to identify nonsegmented viral genomes. This study presents SegVir, a novel tool designed to identify segmented RNA viruses and reconstruct their complete genomes from complex metatranscriptomes. SegVir leverages both close and remote homology searches to accurately detect conserved and divergent viral segments. Additionally, we introduce a new method that can evaluate the genome completeness and conservation based on gene content. Our evaluations on simulated datasets demonstrate SegVir's superior sensitivity and precision compared to existing tools. Moreover, in experiments using real data, we identified some virus segments missing in the NCBI database, underscoring SegVir's potential to enhance viral metagenome analysis. The source code and supporting data of SegVir are available via https://github.com/HubertTang/SegVir.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SegVir:从元转录组重建完整的分段 RNA 病毒基因组。
片段 RNA 病毒是一类具有多片段基因组的复杂 RNA 病毒。重建完整的分段病毒对于促进我们了解病毒的多样性、进化和对公共卫生的影响至关重要。利用元转录组数据来识别已知和新型分节病毒加快了对各种生态系统中分节病毒的调查。然而,高遗传多样性和难以分选完整的分段基因组给分段病毒的重建带来了巨大挑战。目前的病毒检测工具主要用于识别非分段病毒基因组。本研究介绍的 SegVir 是一种新型工具,旨在从复杂的元转录组中识别分段 RNA 病毒并重建其完整基因组。SegVir 利用近源和远源同源性搜索准确检测保守和差异病毒片段。此外,我们还引入了一种新方法,可以根据基因含量评估基因组的完整性和保护性。我们在模拟数据集上进行的评估表明,与现有工具相比,SegVir 的灵敏度和精确度都更胜一筹。此外,在使用真实数据进行的实验中,我们还发现了 NCBI 数据库中缺失的一些病毒片段,这凸显了 SegVir 在加强病毒元基因组分析方面的潜力。SegVir 的源代码和支持数据可通过 https://github.com/HubertTang/SegVir 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
期刊最新文献
Remarkable evolutionary rate variations among lineages and among genome compartments in malaria parasites of mammals. Digital image processing to detect adaptive evolution. Accurate Inference of the Polyploid Continuum using Forward-time Simulations. Comparative genomics provides insights into adaptive evolution and demographics of bats. Convergent degenerated regulatory elements associated with limb loss in limbless amphibians and reptiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1