首页 > 最新文献

Molecular biology and evolution最新文献

英文 中文
Remarkable evolutionary rate variations among lineages and among genome compartments in malaria parasites of mammals. 哺乳动物疟疾寄生虫不同种系和不同基因组间显著的进化速度差异。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-21 DOI: 10.1093/molbev/msae243
Hend Abu-Elmakarem, Oscar A MacLean, Frank Venter, Lindsey J Plenderleith, Richard L Culleton, Beatrice H Hahn, Paul M Sharp

Genes encoded within organelle genomes often evolve at rates different from those in the nuclear genome. Here, we analyzed the relative rates of nucleotide substitution in the mitochondrial, apicoplast and nuclear genomes in four different lineages of Plasmodium species (malaria parasites) infecting mammals. The rates of substitution in the three genomes exhibit substantial variation among lineages, with the relative rates of nuclear and mitochondrial DNA being particularly divergent between the Laverania (including Plasmodium falciparum) and Vivax lineages (including Plasmodium vivax). Consideration of synonymous and nonsynonymous substitution rates suggests that their variation is largely due to changes in mutation rates, with constraints on amino acid replacements remaining more similar among lineages. Mitochondrial DNA mutation rate variations among lineages may reflect differences in the long-term average lengths of the sexual and asexual stages of the life cycle. These rate variations have far-reaching implications for the use of molecular clocks to date Plasmodium evolution.

细胞器基因组中编码的基因通常以不同于核基因组的速度进化。在这里,我们分析了感染哺乳动物的疟原虫(疟疾寄生虫)四个不同品系的线粒体、细胞质和核基因组中核苷酸的相对替换率。三个基因组的替换率在不同品系之间存在很大差异,其中核DNA和线粒体DNA的相对替换率在Laverania品系(包括恶性疟原虫)和Vivax品系(包括间日疟原虫)之间的差异尤为明显。对同义和非同义替换率的考虑表明,它们的变化主要是由于突变率的变化造成的,而氨基酸替换的限制因素在不同品系之间仍然较为相似。不同种系之间线粒体 DNA 变异率的变化可能反映了生命周期有性阶段和无性阶段长期平均长度的差异。这些变异对利用分子钟来确定疟原虫进化的时间具有深远的影响。
{"title":"Remarkable evolutionary rate variations among lineages and among genome compartments in malaria parasites of mammals.","authors":"Hend Abu-Elmakarem, Oscar A MacLean, Frank Venter, Lindsey J Plenderleith, Richard L Culleton, Beatrice H Hahn, Paul M Sharp","doi":"10.1093/molbev/msae243","DOIUrl":"https://doi.org/10.1093/molbev/msae243","url":null,"abstract":"<p><p>Genes encoded within organelle genomes often evolve at rates different from those in the nuclear genome. Here, we analyzed the relative rates of nucleotide substitution in the mitochondrial, apicoplast and nuclear genomes in four different lineages of Plasmodium species (malaria parasites) infecting mammals. The rates of substitution in the three genomes exhibit substantial variation among lineages, with the relative rates of nuclear and mitochondrial DNA being particularly divergent between the Laverania (including Plasmodium falciparum) and Vivax lineages (including Plasmodium vivax). Consideration of synonymous and nonsynonymous substitution rates suggests that their variation is largely due to changes in mutation rates, with constraints on amino acid replacements remaining more similar among lineages. Mitochondrial DNA mutation rate variations among lineages may reflect differences in the long-term average lengths of the sexual and asexual stages of the life cycle. These rate variations have far-reaching implications for the use of molecular clocks to date Plasmodium evolution.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital image processing to detect adaptive evolution. 检测适应性进化的数字图像处理
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/molbev/msae242
Md Ruhul Amin, Mahmudul Hasan, Michael DeGiorgio

In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data is limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multi-scale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps.

近年来,图像处理和机器学习的进步推动了检测自然选择下基因组区域的模式转变。早期的机器学习技术采用群体遗传汇总统计作为特征,重点关注适应性和中性过程所预期的特定基因组模式。虽然在训练数据有限的情况下,这种工程特征非常重要,但由于现在可以轻松生成模拟数据,因此最近开发出了一些方法,这些方法采用单倍型排列的图像表示,并利用卷积神经网络自动提取重要特征。被称为α分子的数字图像处理方法是一类用于多尺度表示物体的技术,可以从图像中提取各种特征。其中一种α分子方法被称为小波分解法,它能更好地控制图像的高频成分。另一种α-分子方法被称为小曲线分解法,它是小波概念的延伸,考虑了图像中沿曲线发生的事件。我们的研究表明,应用这些α-分子技术从单体型配对的图像表征中提取特征,可获得较高的真阳性率和准确率,从而利用线性和非线性机器学习分类器从基因组数据中检测出硬和软选择性扫描特征。此外,我们发现这种模型易于可视化和解释,其性能可与当代深度学习方法检测横扫的性能相媲美。
{"title":"Digital image processing to detect adaptive evolution.","authors":"Md Ruhul Amin, Mahmudul Hasan, Michael DeGiorgio","doi":"10.1093/molbev/msae242","DOIUrl":"https://doi.org/10.1093/molbev/msae242","url":null,"abstract":"<p><p>In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data is limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multi-scale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate Inference of the Polyploid Continuum using Forward-time Simulations. 利用前向时间模拟准确推断多倍体连续体
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-16 DOI: 10.1093/molbev/msae241
Tamsen Dunn, Arun Sethuraman

Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic vs. disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.

在被子植物的进化史上,发生了多轮全基因组复制(WGD),随后是二倍体化。为了模拟 WGD 的基因组后果和进化意义,人们做了大量工作。虽然研究人员历来将多倍体建模为全多倍体或自多倍体,但天然多倍体的多样性跨越了多参数分化的连续统一体,例如多体遗传与非多体遗传的程度,以及祖先品系之间的遗传分化程度。在此,我们介绍一种名为 SpecKS 的前向时间多倍体基因组进化模拟器。SpecKS 将多倍体物种演化模拟为源自二维连续体,其维度既考虑了祖先亲代基因组之间的遗传分化程度,也考虑了祖先物种演化与随后在衍生多倍体中重新组合之间的时滞。通过大量模拟,我们证明了二维连续体任一维度上初始条件的变化都会对 Ks 直方图的形状产生决定性影响。我们的研究结果表明,根据 Ks 直方图峰值估算 WGD 时间的常用方法的误差会随着异源多倍体程度的增加而增加,因此我们提出了一种与异源多倍体程度无关的替代性精确估算方法。最后,我们利用 SpecKS 得出了一些检验方法,这些方法可以从输入的 Ks 直方图中推断出亲本分化与 WGD 时间之间的滞后时间以及祖先物种的多样性。我们将后一种检验方法应用于植物界 200 多个物种的转录组数据,其结果与目前流行的理论相一致,即大多数被子植物品系来自不同的亲本基因组,可能起源于异源多倍体。
{"title":"Accurate Inference of the Polyploid Continuum using Forward-time Simulations.","authors":"Tamsen Dunn, Arun Sethuraman","doi":"10.1093/molbev/msae241","DOIUrl":"https://doi.org/10.1093/molbev/msae241","url":null,"abstract":"<p><p>Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic vs. disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative genomics provides insights into adaptive evolution and demographics of bats. 比较基因组学为蝙蝠的适应性进化和人口统计提供了洞察力。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1093/molbev/msae208
Gaoming Liu, Qi Pan, Pingfen Zhu, Xinyu Guo, Zhan Zhang, Zihao Li, Yaolei Zhang, Xiaoxiao Zhang, Jiahao Wang, Weiqiang Liu, Chunyan Hu, Yang Yu, Xiao Wang, Weixiao Chen, Meng Li, Wenhua Yu, Xin Liu, Inge Seim, Guangyi Fan, Xuming Zhou

Bats possess a range of distinctive characteristics, including flight, echolocation, impressive longevity, and the ability to harbor various zoonotic pathogens. Additionally, they account for the second-highest species diversity among mammalian orders, yet their phylogenetic relationships and demographic history remain underexplored. Here, we generated de novo assembled genomes for 17 bat species and two of their mammalian relatives (the Amur hedgehog and Chinese mole shrew), with 12 genomes reaching chromosome-level assembly. Comparative genomics and ChIP-seq assays identified newly gained genomic regions in bats potentially linked to the regulation of gene activity and expression. Notably, some antiviral infection related gene under positive selection exhibited the activity of suppressing cancer, evidencing the linkage between virus tolerance and cancer resistance in bats. By integrating published bat genome assemblies, phylogenetic reconstruction established the proximity of noctilionoid bats to vesper bats. Interestingly, we found two distinct patterns of ancient population dynamics in bats and population changes since the last-glacial maximum do not reflect species phylogenetic relationships. These findings enriched our understanding of adaptive mechanisms and demographic history of bats.

蝙蝠具有一系列与众不同的特征,包括飞行、回声定位、惊人的寿命以及携带各种人畜共患病病原体的能力。此外,蝙蝠的物种多样性在哺乳动物中位居第二,但它们的系统发育关系和人口历史仍未得到充分探索。在这里,我们生成了 17 种蝙蝠及其两种哺乳动物近亲(阿穆尔刺猬和中国鼹鼩)的全新组装基因组,其中 12 个基因组达到了染色体组水平的组装。比较基因组学和 ChIP-seq 分析确定了蝙蝠新获得的基因组区域,这些区域可能与基因活性和表达调控有关。值得注意的是,一些抗病毒感染相关基因在正向选择下表现出抑制癌症的活性,证明了蝙蝠的病毒耐受性和癌症抵抗力之间的联系。通过整合已发表的蝙蝠基因组汇编,系统发育重建确定了夜叉蝙蝠与紫斑蝙蝠的亲缘关系。有趣的是,我们发现了蝙蝠古老种群动态的两种截然不同的模式,而且自上一个冰期最大值以来的种群变化并不反映物种的系统发育关系。这些发现丰富了我们对蝙蝠适应机制和人口历史的理解。
{"title":"Comparative genomics provides insights into adaptive evolution and demographics of bats.","authors":"Gaoming Liu, Qi Pan, Pingfen Zhu, Xinyu Guo, Zhan Zhang, Zihao Li, Yaolei Zhang, Xiaoxiao Zhang, Jiahao Wang, Weiqiang Liu, Chunyan Hu, Yang Yu, Xiao Wang, Weixiao Chen, Meng Li, Wenhua Yu, Xin Liu, Inge Seim, Guangyi Fan, Xuming Zhou","doi":"10.1093/molbev/msae208","DOIUrl":"https://doi.org/10.1093/molbev/msae208","url":null,"abstract":"<p><p>Bats possess a range of distinctive characteristics, including flight, echolocation, impressive longevity, and the ability to harbor various zoonotic pathogens. Additionally, they account for the second-highest species diversity among mammalian orders, yet their phylogenetic relationships and demographic history remain underexplored. Here, we generated de novo assembled genomes for 17 bat species and two of their mammalian relatives (the Amur hedgehog and Chinese mole shrew), with 12 genomes reaching chromosome-level assembly. Comparative genomics and ChIP-seq assays identified newly gained genomic regions in bats potentially linked to the regulation of gene activity and expression. Notably, some antiviral infection related gene under positive selection exhibited the activity of suppressing cancer, evidencing the linkage between virus tolerance and cancer resistance in bats. By integrating published bat genome assemblies, phylogenetic reconstruction established the proximity of noctilionoid bats to vesper bats. Interestingly, we found two distinct patterns of ancient population dynamics in bats and population changes since the last-glacial maximum do not reflect species phylogenetic relationships. These findings enriched our understanding of adaptive mechanisms and demographic history of bats.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity of transcriptional regulatory adaptation in E. coli. 大肠杆菌转录调控适应的多样性。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1093/molbev/msae240
Christopher Dalldorf, Ying Hefner, Richard Szubin, Josefin Johnsen, Elsayed Mohamed, Gaoyuan Li, Jayanth Krishnan, Adam M Feist, Bernhard O Palsson, Daniel C Zielinski

The Transcriptional Regulatory Network (TRN) in bacteria is thought to rapidly evolve in response to selection pressures, modulating transcription factor (TF) activities and interactions. In order to probe the limits and mechanisms surrounding the short-term adaptability of the TRN, we generated, evolved, and characterized knockout (KO) strains in E. coli for 11 regulators selected based on measured growth impact on glucose minimal media. All but one knockout strain (Δlrp) were able to recover growth and did so requiring few convergent mutations. We found that the TF knockout adaptations could be divided into four categories: 1) Strains (ΔargR, ΔbasR, Δlon, ΔzntR, Δzur) that recovered growth without any regulator-specific adaptations, likely due to minimal activity of the regulator on the growth condition, 2) Strains (ΔcytR, ΔmlrA, ΔybaO) that recovered growth without TF-specific mutations but with differential expression of regulators with overlapping regulons to the KO'ed TF, 3) Strains (Δcrp, Δfur) that recovered growth using convergent mutations within their regulatory networks, including regulated promoters and connected regulators, and 4) Strains (Δlrp) that were unable to fully recover growth, seemingly due to the broad connectivity of the TF within the TRN. Analyzing growth capabilities in evolved and unevolved strains indicated that growth adaptation can restore fitness to diverse substrates often despite a lack of TF-specific mutations. This work reveals the breadth of TRN adaptive mechanisms and suggests these mechanisms can be anticipated based on the network and functional context of the perturbed TFs.

细菌中的转录调控网络(TRN)被认为会随着选择压力的变化而快速进化,从而调节转录因子(TF)的活性和相互作用。为了探究围绕转录调控网络短期适应性的限制和机制,我们在大肠杆菌中产生、进化并鉴定了根据在葡萄糖最小培养基上测量的生长影响选出的 11 种调控因子的基因敲除(KO)菌株。除一个基因敲除菌株(Δlrp)外,其他所有菌株都能恢复生长,而且只需要很少的趋同突变。我们发现,TF 基因敲除适应性可分为四类:1)菌株(ΔargR、ΔbasR、Δlon、ΔzntR、Δzur)在恢复生长过程中没有发生任何调控因子特异性适应,这可能是由于调控因子对生长条件的影响极小;2)菌株(ΔcytR、ΔmlrA、ΔybaO)在恢复生长过程中没有发生 TF 特异性突变,但与 KO'ed TF 有重叠调控子的调控因子有不同的表达、3)利用其调控网络(包括受调控的启动子和连接的调控因子)中的趋同突变恢复生长的菌株(Δcrp、Δfur);以及 4)无法完全恢复生长的菌株(Δlrp),这似乎是由于 TF 在 TRN 中具有广泛的连接性。对进化和未进化菌株生长能力的分析表明,尽管缺乏特异性 TF 突变,但生长适应往往能恢复对不同基质的适应性。这项工作揭示了 TRN 适应机制的广度,并表明可以根据受干扰 TF 的网络和功能背景来预测这些机制。
{"title":"Diversity of transcriptional regulatory adaptation in E. coli.","authors":"Christopher Dalldorf, Ying Hefner, Richard Szubin, Josefin Johnsen, Elsayed Mohamed, Gaoyuan Li, Jayanth Krishnan, Adam M Feist, Bernhard O Palsson, Daniel C Zielinski","doi":"10.1093/molbev/msae240","DOIUrl":"https://doi.org/10.1093/molbev/msae240","url":null,"abstract":"<p><p>The Transcriptional Regulatory Network (TRN) in bacteria is thought to rapidly evolve in response to selection pressures, modulating transcription factor (TF) activities and interactions. In order to probe the limits and mechanisms surrounding the short-term adaptability of the TRN, we generated, evolved, and characterized knockout (KO) strains in E. coli for 11 regulators selected based on measured growth impact on glucose minimal media. All but one knockout strain (Δlrp) were able to recover growth and did so requiring few convergent mutations. We found that the TF knockout adaptations could be divided into four categories: 1) Strains (ΔargR, ΔbasR, Δlon, ΔzntR, Δzur) that recovered growth without any regulator-specific adaptations, likely due to minimal activity of the regulator on the growth condition, 2) Strains (ΔcytR, ΔmlrA, ΔybaO) that recovered growth without TF-specific mutations but with differential expression of regulators with overlapping regulons to the KO'ed TF, 3) Strains (Δcrp, Δfur) that recovered growth using convergent mutations within their regulatory networks, including regulated promoters and connected regulators, and 4) Strains (Δlrp) that were unable to fully recover growth, seemingly due to the broad connectivity of the TF within the TRN. Analyzing growth capabilities in evolved and unevolved strains indicated that growth adaptation can restore fitness to diverse substrates often despite a lack of TF-specific mutations. This work reveals the breadth of TRN adaptive mechanisms and suggests these mechanisms can be anticipated based on the network and functional context of the perturbed TFs.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent degenerated regulatory elements associated with limb loss in limbless amphibians and reptiles. 与无肢两栖类和爬行类动物肢体缺失有关的趋同退化调控元件。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1093/molbev/msae239
Chenglong Zhu, Shengyou Li, Daizhen Zhang, Jinjin Zhang, Gang Wang, Botong Zhou, Jiangmin Zheng, Wenjie Xu, Zhengfei Wang, Xueli Gao, Qiuning Liu, Tingfeng Xue, Huabin Zhang, Chunhui Li, Baoming Ge, Yuxuan Liu, Qiang Qiu, Huixian Zhang, Jinghui Huang, Boping Tang, Kun Wang

Limbs are a defining characteristic of tetrapods, yet numerous taxa, primarily among amphibians and reptiles, have independently lost limbs as an adaptation to new ecological niches. To elucidate the genetic factors contributing to this convergent limb loss, we present a 12 Gb chromosome-level assembly of the Banna caecilian (Ichthyophis bannanicus), a limbless amphibian. Our comparative analysis, which includes the reconstruction of amphibian karyotype evolution, reveals constrained gene length evolution in a subset of developmental genes across three large genomes. Investigation of limb development genes uncovered the loss of Grem1 in caecilians and Tulp3 in snakes. Interestingly, caecilians and snakes share a significantly larger number of convergent degenerated conserved non-coding elements (dCNEs) than limbless lizards, which have a shorter evolutionary history of limb loss. These convergent dCNEs overlap significantly with active genomic regions during mouse limb development and are conserved in limbed species, suggesting their essential role in limb patterning in the tetrapod common ancestor. While most convergent dCNEs emerged in the jawed vertebrate ancestor, coinciding with the origin of paired appendage, more recent dCNEs also contribute to limb development, as demonstrated through functional experiments. Our study provides novel insights into the regulatory elements associated with limb development and loss, offering an evolutionary perspective on the genetic basis of morphological specialization.

肢体是四足动物的一个显著特征,然而许多类群,主要是两栖类和爬行类中的类群,为了适应新的生态位,都独立地失去了肢体。为了阐明导致这种趋同性肢体丧失的遗传因素,我们展示了一种无肢两栖动物--Banna caecilian(Ichthyophis bannanicus)的 12 Gb 染色体组。我们的比较分析包括两栖动物核型进化的重建,揭示了三个大型基因组中发育基因子集受限的基因长度进化。对肢体发育基因的研究发现,在无尾两栖动物中Grem1基因缺失,在蛇类中Tulp3基因缺失。有趣的是,与肢体缺失进化史较短的无肢蜥蜴相比,凯西利亚人和蛇类共享的趋同退化保守非编码元件(dCNEs)数量要多得多。这些收敛的dCNEs与小鼠肢体发育过程中的活跃基因组区域有明显重叠,并且在有肢物种中是保守的,这表明它们在四足动物共同祖先的肢体模式化过程中发挥着重要作用。虽然大多数会聚dCNE出现于有颌脊椎动物的祖先,与成对附肢的起源相吻合,但正如功能实验所证明的那样,较新的dCNE也有助于肢体的发育。我们的研究为了解与肢体发育和缺失相关的调控元件提供了新的视角,为形态特化的遗传基础提供了一个进化的视角。
{"title":"Convergent degenerated regulatory elements associated with limb loss in limbless amphibians and reptiles.","authors":"Chenglong Zhu, Shengyou Li, Daizhen Zhang, Jinjin Zhang, Gang Wang, Botong Zhou, Jiangmin Zheng, Wenjie Xu, Zhengfei Wang, Xueli Gao, Qiuning Liu, Tingfeng Xue, Huabin Zhang, Chunhui Li, Baoming Ge, Yuxuan Liu, Qiang Qiu, Huixian Zhang, Jinghui Huang, Boping Tang, Kun Wang","doi":"10.1093/molbev/msae239","DOIUrl":"https://doi.org/10.1093/molbev/msae239","url":null,"abstract":"<p><p>Limbs are a defining characteristic of tetrapods, yet numerous taxa, primarily among amphibians and reptiles, have independently lost limbs as an adaptation to new ecological niches. To elucidate the genetic factors contributing to this convergent limb loss, we present a 12 Gb chromosome-level assembly of the Banna caecilian (Ichthyophis bannanicus), a limbless amphibian. Our comparative analysis, which includes the reconstruction of amphibian karyotype evolution, reveals constrained gene length evolution in a subset of developmental genes across three large genomes. Investigation of limb development genes uncovered the loss of Grem1 in caecilians and Tulp3 in snakes. Interestingly, caecilians and snakes share a significantly larger number of convergent degenerated conserved non-coding elements (dCNEs) than limbless lizards, which have a shorter evolutionary history of limb loss. These convergent dCNEs overlap significantly with active genomic regions during mouse limb development and are conserved in limbed species, suggesting their essential role in limb patterning in the tetrapod common ancestor. While most convergent dCNEs emerged in the jawed vertebrate ancestor, coinciding with the origin of paired appendage, more recent dCNEs also contribute to limb development, as demonstrated through functional experiments. Our study provides novel insights into the regulatory elements associated with limb development and loss, offering an evolutionary perspective on the genetic basis of morphological specialization.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bayesian Phylogenetic Bootstrap, Application to Short Trees and Branches. 贝叶斯系统发育引导法,短树和分支的应用。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-08 DOI: 10.1093/molbev/msae238
Frédéric Lemoine, Olivier Gascuel

Felsenstein's bootstrap is the most commonly used method to measure branch support in phylogenetics. Current sequencing technologies can result in massive sampling of taxa (e.g. SARS-CoV-2). In this case, the sequences are very similar, the trees are short, and the branches correspond to a small number of mutations (possibly 0). Nevertheless, these trees contain a strong signal, with unresolved parts but a low rate of false branches. With such data, Felsenstein's bootstrap is not satisfactory. Due to the frequentist nature of bootstrap sampling, the expected support of a branch corresponding to a single mutation is ∼63%, even though it is highly likely to be correct. Here we propose a Bayesian version of the phylogenetic bootstrap in which sites are assigned uninformative prior probabilities. The branch support can then be interpreted as a posterior probability. We do not view the alignment as a small subsample of a large sample of sites, but rather as containing all available information (e.g., as with complete viral genomes, which are becoming routine). We give formulas for expected supports under the assumption of perfect phylogeny, in both the frequentist and Bayesian frameworks, where a branch corresponding to a single mutation now has an expected support of ∼90%. Simulations show that these theoretical results are robust to realistic data. Analyses on low-homoplasy viral and non-viral datasets show that Bayesian bootstrap support is easier to interpret, with high supports for branches very likely to be correct. As homoplasy increases, the two supports become closer and strongly correlated.

费尔森斯泰因引导法(Felsenstein's bootstrap)是系统发生学中测量分支支持率最常用的方法。目前的测序技术可以对分类群进行大量采样(如 SARS-CoV-2)。在这种情况下,序列非常相似,树很短,分支对应的突变数量很少(可能为 0)。然而,这些树含有强烈的信号,有未解决的部分,但错误分支率很低。对于这样的数据,费尔森斯坦的引导法并不令人满意。由于自举取样的频繁性,与单个突变相对应的分支的预期支持率为 63%,尽管它很可能是正确的。在这里,我们提出了贝叶斯版本的系统发育自举法,其中的位点被赋予了无信息的先验概率。分支支持率可以解释为后验概率。我们不把比对看作是大量位点样本中的一个小的子样本,而是把它看作包含了所有可用信息(例如,完整的病毒基因组,这已成为常规)。我们给出了完美系统发育假设下的预期支持率公式,在频数主义和贝叶斯框架下,对应于单个突变的分支现在的预期支持率为 ∼90%。模拟结果表明,这些理论结果对现实数据是可靠的。对低同源性病毒和非病毒数据集的分析表明,贝叶斯引导支持率更容易解释,高支持率的分支很可能是正确的。随着同源性的增加,这两种支持率变得更加接近,并具有很强的相关性。
{"title":"The Bayesian Phylogenetic Bootstrap, Application to Short Trees and Branches.","authors":"Frédéric Lemoine, Olivier Gascuel","doi":"10.1093/molbev/msae238","DOIUrl":"https://doi.org/10.1093/molbev/msae238","url":null,"abstract":"<p><p>Felsenstein's bootstrap is the most commonly used method to measure branch support in phylogenetics. Current sequencing technologies can result in massive sampling of taxa (e.g. SARS-CoV-2). In this case, the sequences are very similar, the trees are short, and the branches correspond to a small number of mutations (possibly 0). Nevertheless, these trees contain a strong signal, with unresolved parts but a low rate of false branches. With such data, Felsenstein's bootstrap is not satisfactory. Due to the frequentist nature of bootstrap sampling, the expected support of a branch corresponding to a single mutation is ∼63%, even though it is highly likely to be correct. Here we propose a Bayesian version of the phylogenetic bootstrap in which sites are assigned uninformative prior probabilities. The branch support can then be interpreted as a posterior probability. We do not view the alignment as a small subsample of a large sample of sites, but rather as containing all available information (e.g., as with complete viral genomes, which are becoming routine). We give formulas for expected supports under the assumption of perfect phylogeny, in both the frequentist and Bayesian frameworks, where a branch corresponding to a single mutation now has an expected support of ∼90%. Simulations show that these theoretical results are robust to realistic data. Analyses on low-homoplasy viral and non-viral datasets show that Bayesian bootstrap support is easier to interpret, with high supports for branches very likely to be correct. As homoplasy increases, the two supports become closer and strongly correlated.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple-wave admixture and adaptive evolution of the Pamirian Wakhi people. 帕米尔瓦希人的多波混血和适应性进化。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-07 DOI: 10.1093/molbev/msae237
Wanxing Xu, Jiaojiao Liu, Xiaoxi Zhang, Jia Wen, Qidi Feng, Yang Gao, Yuwen Pan, Yan Lu, Asifullah Khan, Shuhua Xu

While whole-genome sequencing has been applied extensively to investigate the genetic diversity of global populations, ethnic minority groups in Pakistan are generally underrepresented. In particular, little is known about the genetic origin and highland adaptation of the Pamirian Wakhi people. According to Chinese historical records, the geographical location and language usage of Wakhi may be closely related to Xinjiang Tajiks (XJT). In this study, based on high-coverage (∼30×) whole-genome sequencing of eight Wakhi and 25 XJT individuals, we performed data analyses together with worldwide populations to gain insights into their genetic composition, demography, and adaptive evolution to the highland environment. The Wakhi derived more than 85% of their ancestry from West Eurasian populations (European ∼44.5%, South Asian ∼42.2%) and 10% from East Eurasian populations (Siberian ∼6.0%, East Asian ∼4.3%). Modeling the admixture history of the Wakhi indicated that the early West-East admixture occurred approximately 3,875-2,250 years ago and that the recent admixture occurred 750-375 years ago. We identified selection signatures across EGLN3, in particular, a distinctive evolutionary signature was observed, and a certain underlying selected haplotype showed higher frequency (87.5%) in the Wakhi than in nearby XJT and other highlanders. Interestingly, we found high-frequency archaic sequences in the Wakhi genome, which overlapped with several genes related to cellular signaling transduction, including MAGI2, previously associated with high-altitude adaptation. Our analysis indicates that the Wakhi are distinct from the XJTs and Tajikistan Tajiks, and shed light on the Wakhi's ancestral origin and genetic basis of high-altitude adaptation.

尽管全基因组测序已被广泛应用于研究全球人口的遗传多样性,但巴基斯坦少数民族群体的代表性普遍不足。特别是,人们对帕米尔瓦其人的基因起源和高原适应性知之甚少。根据中国历史记载,瓦其人的地理位置和语言使用可能与新疆塔吉克人(XJT)密切相关。在本研究中,我们基于对8个瓦希族个体和25个新疆塔吉克族个体的高覆盖率(∼30×)全基因组测序,与世界范围内的人群一起进行了数据分析,以深入了解他们的遗传组成、人口结构以及对高原环境的适应性进化。瓦希人85%以上的祖先来自欧亚西部人群(欧洲人∼44.5%,南亚人∼42.2%),10%来自欧亚东部人群(西伯利亚人∼6.0%,东亚人∼4.3%)。对瓦希族的混血历史建模表明,早期的西东混血发生在大约 3,875-2,250 年前,近期的混血发生在 750-375 年前。我们发现了整个 EGLN3 的选择特征,尤其是观察到了一个独特的进化特征,与邻近的 XJT 和其他高原人相比,某个潜在的选择单倍型在瓦希人中的频率更高(87.5%)。有趣的是,我们在瓦希人的基因组中发现了高频率的古老序列,这些序列与几个与细胞信号传导有关的基因重叠,包括以前与高海拔适应有关的 MAGI2。我们的分析表明,瓦希人有别于新疆塔吉克人和塔吉克斯坦塔吉克人,并揭示了瓦希人的祖先起源和高海拔适应的遗传基础。
{"title":"Multiple-wave admixture and adaptive evolution of the Pamirian Wakhi people.","authors":"Wanxing Xu, Jiaojiao Liu, Xiaoxi Zhang, Jia Wen, Qidi Feng, Yang Gao, Yuwen Pan, Yan Lu, Asifullah Khan, Shuhua Xu","doi":"10.1093/molbev/msae237","DOIUrl":"10.1093/molbev/msae237","url":null,"abstract":"<p><p>While whole-genome sequencing has been applied extensively to investigate the genetic diversity of global populations, ethnic minority groups in Pakistan are generally underrepresented. In particular, little is known about the genetic origin and highland adaptation of the Pamirian Wakhi people. According to Chinese historical records, the geographical location and language usage of Wakhi may be closely related to Xinjiang Tajiks (XJT). In this study, based on high-coverage (∼30×) whole-genome sequencing of eight Wakhi and 25 XJT individuals, we performed data analyses together with worldwide populations to gain insights into their genetic composition, demography, and adaptive evolution to the highland environment. The Wakhi derived more than 85% of their ancestry from West Eurasian populations (European ∼44.5%, South Asian ∼42.2%) and 10% from East Eurasian populations (Siberian ∼6.0%, East Asian ∼4.3%). Modeling the admixture history of the Wakhi indicated that the early West-East admixture occurred approximately 3,875-2,250 years ago and that the recent admixture occurred 750-375 years ago. We identified selection signatures across EGLN3, in particular, a distinctive evolutionary signature was observed, and a certain underlying selected haplotype showed higher frequency (87.5%) in the Wakhi than in nearby XJT and other highlanders. Interestingly, we found high-frequency archaic sequences in the Wakhi genome, which overlapped with several genes related to cellular signaling transduction, including MAGI2, previously associated with high-altitude adaptation. Our analysis indicates that the Wakhi are distinct from the XJTs and Tajikistan Tajiks, and shed light on the Wakhi's ancestral origin and genetic basis of high-altitude adaptation.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating contact tracing data to enhance outbreak phylodynamic inference: a deep learning approach. 整合接触追踪数据以加强疫情系统动力学推断:一种深度学习方法。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-05 DOI: 10.1093/molbev/msae232
Ruopeng Xie, Dillon C Adam, Shu Hu, Benjamin J Cowling, Olivier Gascuel, Anna Zhukova, Vijaykrishna Dhanasekaran

Phylodynamics is central to understanding infectious disease dynamics through the integration of genomic and epidemiological data. Despite advancements, including the application of deep learning to overcome computational limitations, significant challenges persist due to data inadequacies and statistical unidentifiability of key parameters. These issues are particularly pronounced in poorly resolved phylogenies, commonly observed in outbreaks such as SARS-CoV-2. In this study, we conducted a thorough evaluation of PhyloDeep, a deep learning inference tool for phylodynamics, assessing its performance on poorly resolved phylogenies. Our findings reveal the limited predictive accuracy of PhyloDeep (and other state-of-the-art approaches) in these scenarios. However, models trained on poorly resolved, realistically simulated trees demonstrate improved predictive power, despite not being infallible, especially in scenarios with superspreading dynamics, whose parameters are challenging to capture accurately. Notably, we observe markedly improved performance through the integration of minimal contact tracing data, which refines poorly resolved trees. Applying this approach to a sample of SARS-CoV-2 sequences partially matched to contact tracing from Hong Kong yields informative estimates of superspreading potential, extending beyond the scope of contact tracing data alone. Our findings demonstrate the potential for enhancing phylodynamic analysis through complementary data integration, ultimately increasing the precision of epidemiological predictions crucial for public health decision making and outbreak control.

系统动力学是通过整合基因组学和流行病学数据了解传染病动态的核心。尽管取得了进步,包括应用深度学习来克服计算限制,但由于数据不足和关键参数的统计不可识别性,重大挑战依然存在。这些问题在系统发育不完善的情况下尤为突出,这在 SARS-CoV-2 等疫情中很常见。在本研究中,我们对用于系统动力学的深度学习推断工具 PhyloDeep 进行了全面评估,评估了它在解析度较低的系统发生上的表现。我们的研究结果表明,PhyloDeep(以及其他最先进的方法)在这些情况下的预测准确性有限。然而,在解析度较差的真实模拟树上训练的模型尽管并非无懈可击,但其预测能力却有所提高,尤其是在具有超传播动态的情况下,其参数的准确捕捉具有挑战性。值得注意的是,通过整合最小接触追踪数据,我们观察到分辨率较低的树的性能明显提高。将这种方法应用于与香港接触追踪数据部分匹配的SARS-CoV-2序列样本,可以对超级传播潜力做出有参考价值的估计,超出了单纯接触追踪数据的范围。我们的研究结果表明,通过互补数据整合,可以提高系统动力学分析的潜力,最终提高对公共卫生决策和疫情控制至关重要的流行病学预测的精确度。
{"title":"Integrating contact tracing data to enhance outbreak phylodynamic inference: a deep learning approach.","authors":"Ruopeng Xie, Dillon C Adam, Shu Hu, Benjamin J Cowling, Olivier Gascuel, Anna Zhukova, Vijaykrishna Dhanasekaran","doi":"10.1093/molbev/msae232","DOIUrl":"https://doi.org/10.1093/molbev/msae232","url":null,"abstract":"<p><p>Phylodynamics is central to understanding infectious disease dynamics through the integration of genomic and epidemiological data. Despite advancements, including the application of deep learning to overcome computational limitations, significant challenges persist due to data inadequacies and statistical unidentifiability of key parameters. These issues are particularly pronounced in poorly resolved phylogenies, commonly observed in outbreaks such as SARS-CoV-2. In this study, we conducted a thorough evaluation of PhyloDeep, a deep learning inference tool for phylodynamics, assessing its performance on poorly resolved phylogenies. Our findings reveal the limited predictive accuracy of PhyloDeep (and other state-of-the-art approaches) in these scenarios. However, models trained on poorly resolved, realistically simulated trees demonstrate improved predictive power, despite not being infallible, especially in scenarios with superspreading dynamics, whose parameters are challenging to capture accurately. Notably, we observe markedly improved performance through the integration of minimal contact tracing data, which refines poorly resolved trees. Applying this approach to a sample of SARS-CoV-2 sequences partially matched to contact tracing from Hong Kong yields informative estimates of superspreading potential, extending beyond the scope of contact tracing data alone. Our findings demonstrate the potential for enhancing phylodynamic analysis through complementary data integration, ultimately increasing the precision of epidemiological predictions crucial for public health decision making and outbreak control.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The characterization of ancient Methanococcales malate dehydrogenases reveals that strong thermal stability prevents unfolding under intense γ-irradiation. 对古老的 Methanococcales 苹果酸脱氢酶进行表征后发现,其强大的热稳定性可防止其在强γ-辐照下解折。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1093/molbev/msae231
D Madern, F Halgand, C Houée-Levin, A-B Dufour, S Coquille, S Ansanay-Alex, S Sacquin-Mora, C Brochier-Armanet

Malate dehydrogenases (MalDH) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures (OGTs) and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80°C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints, one remaining hyperthermophilic while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e., strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory towards mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.

苹果酸脱氢酶(MalDH)(EC.1.1.1.37)参与三羧酸循环中草酰乙酸到丙酮酸的转化,是研究酶进化和适应的相关模型。同样,最近的一项研究表明,古细菌的一个主要品系--甲烷球菌(Methanococcales)是研究原核生物蛋白质组热适应分子过程的良好模型。在这里,我们利用祖先序列重建和古酶学来描述古代和现生 MalDHs 的特征。我们观察到推断的最适生长温度(OGTs)与实验的最适活性温度(A-Topt)之间存在良好的相关性。特别是,我们发现存在于 Methanococcales 的祖先中的 MalDH 具有超恒温性,其 A-Topt 为 80°C,与嗜热生活方式一致。这个祖先产生了两个具有不同热限制的品系,其中一个品系仍然是嗜热的,而另一个品系则经历了数次对寒冷环境的独立适应。令人惊讶的是,第一系的酶保留了耐热性(即较强的耐热性和较高的A-Topt),而第二系的祖先则表现出较强的耐热性,但A-Topt却降低了。我们利用突变体模拟了嗜中性的适应轨迹,并证明通过引入少量突变,可以在不改变酶的恒温性的情况下显著降低 A-Topt。最后,我们揭示了耐热性与抗γ-辐照诱导的解折能力之间意想不到的联系。
{"title":"The characterization of ancient Methanococcales malate dehydrogenases reveals that strong thermal stability prevents unfolding under intense γ-irradiation.","authors":"D Madern, F Halgand, C Houée-Levin, A-B Dufour, S Coquille, S Ansanay-Alex, S Sacquin-Mora, C Brochier-Armanet","doi":"10.1093/molbev/msae231","DOIUrl":"https://doi.org/10.1093/molbev/msae231","url":null,"abstract":"<p><p>Malate dehydrogenases (MalDH) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures (OGTs) and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80°C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints, one remaining hyperthermophilic while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e., strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory towards mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular biology and evolution
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1