Wenjing Hu, Di Wu, Dongshen Li, Xiaoming Cheng, Zunjie Wang, Die Zhao, Jizeng Jia
{"title":"Two dwarfing genes Rht-B1b and Rht-D1b show pleiotropic effects on grain protein content in bread wheat (Triticum aestivum L.).","authors":"Wenjing Hu, Di Wu, Dongshen Li, Xiaoming Cheng, Zunjie Wang, Die Zhao, Jizeng Jia","doi":"10.1007/s00122-024-04713-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Five QTL for wheat grain protein content were identified, and the effects of two dwarfing genes Rht-B1b and Rht-D1b on grain protein content were validated in multiple populations. Grain protein content (GPC) plays an important role in wheat quality. Here, a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) for GPC. Two hundred and five RILs and their parents were grown in three years in randomized complete blocks each with two replications, and genotyped using the wheat 55 K SNP array. Five QTL were identified for GPC on chromosomes 1A, 1B, 2D, 4B, and 4D. Notably, QGpc.yaas-4B (co-located with Rht-B1) and QGpc.yaas-4D (co-located with Rht-D1) were consistently detected across all experiments and best linear unbiased estimating, accounting for 6.61-8.39% and 6.05-10.21% of the phenotypic variances, respectively. The effects of these two dwarfing alleles Rht-B1b and Rht-D1b on reducing GPC and plant height were validated in two additional RIL populations and one natural population. This study lays a foundation for further investigating the effects of dwarfing genes Rht-B1b and Rht-D1b on wheat GPC.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04713-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Five QTL for wheat grain protein content were identified, and the effects of two dwarfing genes Rht-B1b and Rht-D1b on grain protein content were validated in multiple populations. Grain protein content (GPC) plays an important role in wheat quality. Here, a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) for GPC. Two hundred and five RILs and their parents were grown in three years in randomized complete blocks each with two replications, and genotyped using the wheat 55 K SNP array. Five QTL were identified for GPC on chromosomes 1A, 1B, 2D, 4B, and 4D. Notably, QGpc.yaas-4B (co-located with Rht-B1) and QGpc.yaas-4D (co-located with Rht-D1) were consistently detected across all experiments and best linear unbiased estimating, accounting for 6.61-8.39% and 6.05-10.21% of the phenotypic variances, respectively. The effects of these two dwarfing alleles Rht-B1b and Rht-D1b on reducing GPC and plant height were validated in two additional RIL populations and one natural population. This study lays a foundation for further investigating the effects of dwarfing genes Rht-B1b and Rht-D1b on wheat GPC.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.