{"title":"Effects of the novel acaricide acynonapyr on the calcium-activated potassium channel","authors":"","doi":"10.1016/j.pestbp.2024.106074","DOIUrl":null,"url":null,"abstract":"<div><p>Resistance to insecticides and acaricides is a major impediment to effectively controlling insect pests worldwide. These pests include the two-spotted spider mite <em>Tetranychus urticae</em> (<em>T. urticae</em>), which exists globally. This polyphagous herbivore causes major agricultural problems and can develop resistance to the agents above. Therefore, the continuous development of acaricides with new modes of action is important to circumvent the resistance of insects to pesticides. Acynonapyr is a novel class of acaricides containing an azabicyclo ring. In this study, we determined the activity of acynonapyr and its analogs on calcium-activated potassium (K<sub>Ca</sub>2) channels in two-spotted spider mites using electrophysiological techniques (patch-clamp). We also examined their acaricidal efficacy against mites in the laboratory. The acynonapyr and analogs blocked <em>T. urticae</em> K<sub>Ca</sub>2 (TurK<sub>Ca</sub>2) channels in a concentration-dependent manner. A comparison of acaricidal activity against <em>T. urticae</em> with inhibitory activity against TurK<sub>Ca</sub>2 revealed that TurK<sub>Ca</sub>2 channels are the primary toxicological targets. Finally, we examined the effect of acynonapyr on <em>Homo sapiens</em> K<sub>Ca</sub>2 (HsaK<sub>Ca</sub>2.2) channels and demonstrated that the compound at 10 μM had a limited effect on the activity of this channel.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0048357524003079/pdfft?md5=116676e648b8258e5c1b61e91bdf5575&pid=1-s2.0-S0048357524003079-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003079","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to insecticides and acaricides is a major impediment to effectively controlling insect pests worldwide. These pests include the two-spotted spider mite Tetranychus urticae (T. urticae), which exists globally. This polyphagous herbivore causes major agricultural problems and can develop resistance to the agents above. Therefore, the continuous development of acaricides with new modes of action is important to circumvent the resistance of insects to pesticides. Acynonapyr is a novel class of acaricides containing an azabicyclo ring. In this study, we determined the activity of acynonapyr and its analogs on calcium-activated potassium (KCa2) channels in two-spotted spider mites using electrophysiological techniques (patch-clamp). We also examined their acaricidal efficacy against mites in the laboratory. The acynonapyr and analogs blocked T. urticae KCa2 (TurKCa2) channels in a concentration-dependent manner. A comparison of acaricidal activity against T. urticae with inhibitory activity against TurKCa2 revealed that TurKCa2 channels are the primary toxicological targets. Finally, we examined the effect of acynonapyr on Homo sapiens KCa2 (HsaKCa2.2) channels and demonstrated that the compound at 10 μM had a limited effect on the activity of this channel.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.