Novel molecular insights into the machinery driving secondary cell wall synthesis and patterning

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-08-13 DOI:10.1016/j.pbi.2024.102614
Annika Saß , René Schneider
{"title":"Novel molecular insights into the machinery driving secondary cell wall synthesis and patterning","authors":"Annika Saß ,&nbsp;René Schneider","doi":"10.1016/j.pbi.2024.102614","DOIUrl":null,"url":null,"abstract":"<div><p>The essential role of water-conducting xylem tissue in plant growth and crop yield is well-established. However, the molecular mechanisms underlying xylem formation and its unique functionality, which is acquired post-mortem, remain poorly understood. Recent advancements in genetic tools and model systems have significantly enhanced the ability to microscopically study xylem development, particularly its distinctive cell wall patterning. Early molecular mechanisms enabling pattern formation have been elucidated and validated through computational models. Despite these advancements, numerous questions remain unresolved but are approachable with current methodologies. This mini-review takes in the latest research findings in xylem cell wall synthesis and patterning and highlights prospective directions for future investigations.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102614"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The essential role of water-conducting xylem tissue in plant growth and crop yield is well-established. However, the molecular mechanisms underlying xylem formation and its unique functionality, which is acquired post-mortem, remain poorly understood. Recent advancements in genetic tools and model systems have significantly enhanced the ability to microscopically study xylem development, particularly its distinctive cell wall patterning. Early molecular mechanisms enabling pattern formation have been elucidated and validated through computational models. Despite these advancements, numerous questions remain unresolved but are approachable with current methodologies. This mini-review takes in the latest research findings in xylem cell wall synthesis and patterning and highlights prospective directions for future investigations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从分子角度揭示驱动次生细胞壁合成和形成的新机制
导水木质部组织在植物生长和作物产量中的重要作用已得到公认。然而,人们对木质部形成的分子机制及其死后获得的独特功能仍然知之甚少。最近在遗传工具和模型系统方面取得的进展大大提高了用显微镜研究木质部发育,特别是其独特的细胞壁花纹的能力。人们通过计算模型阐明并验证了木质部模式形成的早期分子机制。尽管取得了这些进展,但仍有许多问题尚未解决,但目前的方法可以解决这些问题。这篇微型综述介绍了木质部细胞壁合成和图案形成方面的最新研究成果,并强调了未来研究的前景方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Plant growth and development: Experimental diversity is essential for dissecting plant diversity. Detecting novel plant pathogen threats to food system security by integrating the Plant Reactome and remote sensing. Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions. Chromatin dynamics and epigenetic regulation in plant development and environmental responses. Editorial overview: Spatial and temporal regulation of molecular and cell biological process across biological scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1