Bayesian variable pressure decline-curve analysis for shale gas wells

Leopoldo M. Ruiz Maraggi , Mark P. Walsh , Larry W. Lake , Frank R. Male
{"title":"Bayesian variable pressure decline-curve analysis for shale gas wells","authors":"Leopoldo M. Ruiz Maraggi ,&nbsp;Mark P. Walsh ,&nbsp;Larry W. Lake ,&nbsp;Frank R. Male","doi":"10.1016/j.uncres.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><p>Decline-curve analysis and production forecasting are usually performed from a deterministic standpoint (point estimation). This approach does not quantify the uncertainty of the model's parameters and thus, the model's estimated ultimate recovery. In addition, decline-curve models do not consider the variations in the bottomhole flowing pressure, which can greatly impact the accuracy of the model's predictions. This work combines a new technique that incorporates variable bottomhole flowing pressure conditions into decline-curve models with Bayesian inference to improve the accuracy of production history-matches while quantifying the uncertainty of the model's parameters and its future production prediction. The method provides fast production history-matches and forecasts of shale gas wells (taking around 1 min per well) and it is more accurate than traditional decline-curve analysis for wells subject to variable bottomhole flowing pressure conditions while quantifying the uncertainty in the model's parameters and estimated ultimate recovery. The main contribution of this work is the illustration of a new method for probabilistic variable pressure decline-curve analysis. We present the application of this workflow for shale gas wells.</p></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"4 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666519024000311/pdfft?md5=485586fb7540f46c791ccdccd52dd39b&pid=1-s2.0-S2666519024000311-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519024000311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decline-curve analysis and production forecasting are usually performed from a deterministic standpoint (point estimation). This approach does not quantify the uncertainty of the model's parameters and thus, the model's estimated ultimate recovery. In addition, decline-curve models do not consider the variations in the bottomhole flowing pressure, which can greatly impact the accuracy of the model's predictions. This work combines a new technique that incorporates variable bottomhole flowing pressure conditions into decline-curve models with Bayesian inference to improve the accuracy of production history-matches while quantifying the uncertainty of the model's parameters and its future production prediction. The method provides fast production history-matches and forecasts of shale gas wells (taking around 1 min per well) and it is more accurate than traditional decline-curve analysis for wells subject to variable bottomhole flowing pressure conditions while quantifying the uncertainty in the model's parameters and estimated ultimate recovery. The main contribution of this work is the illustration of a new method for probabilistic variable pressure decline-curve analysis. We present the application of this workflow for shale gas wells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
页岩气井贝叶斯变压下降曲线分析
衰减曲线分析和产量预测通常是从确定性角度(点估算)进行的。这种方法无法量化模型参数的不确定性,因此也无法量化模型估计的最终采收率。此外,下降曲线模型没有考虑井底流动压力的变化,而这种变化会极大地影响模型预测的准确性。这项工作将一种新技术与贝叶斯推理相结合,将井底流动压力的变化情况纳入递减曲线模型,以提高生产历史匹配的准确性,同时量化模型参数的不确定性及其未来产量预测。该方法可快速匹配页岩气井的生产历史并进行预测(每口井耗时约 1 分钟),对于井底流动压力条件可变的气井,该方法比传统的衰减曲线分析更准确,同时还能量化模型参数的不确定性和估计的最终采收率。这项工作的主要贡献在于说明了一种新的概率变压递减曲线分析方法。我们介绍了这一工作流程在页岩气井中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Identification of early operational defects in photovoltaic modules: A case study of a 24.9 MWp solar PV system in Sumatra, Indonesia The failure behavior of prefabricated fractured sandstone with different rock bridge inclination angles under freeze-thaw cycles Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation Optimization and potential assessment of CO2 geological storage caprock in the saline aquifers of the Qingjiang Basin, middle and lower reaches of the Yangtze River Exploring geothermal energy as a sustainable source of energy: A systemic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1