Characterization of corrosion products formed in high-strength dual-phase steels under an accelerated corrosion test

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Science and Technology-An International Journal-Jestech Pub Date : 2024-08-12 DOI:10.1016/j.jestch.2024.101796
Digdem Giray , Mehmet Şeref Sönmez , Ridvan Yamanoglu , Hasan Ismail Yavuz , Onur Muratal
{"title":"Characterization of corrosion products formed in high-strength dual-phase steels under an accelerated corrosion test","authors":"Digdem Giray ,&nbsp;Mehmet Şeref Sönmez ,&nbsp;Ridvan Yamanoglu ,&nbsp;Hasan Ismail Yavuz ,&nbsp;Onur Muratal","doi":"10.1016/j.jestch.2024.101796","DOIUrl":null,"url":null,"abstract":"<div><p>There are some researches in the literature on the mechanical characteristics of dual-phase (DP) steels used in the automotive industry, but there is no comprehensive research on the corrosion behavior of these steels. In this work, the corrosion behavior of DP steels (DP440, DP590, DP980) exposed to two cycles of accelerated corrosion testing in accordance with Ford CETP 00.00-L-467 was observed. Raman and X-ray diffraction (XRD) techniques were used to classify the corrosion products, and the morphology of the samples was studied using a scanning electron microscope (SEM). Goethite and haematite were the primary chemical compounds determined. In high-mechanical strength DP steels, akaganeite was also identified in corroded specimens. The compounds formed due to corrosion were revealed by SEM images. In this work, according to the results of Raman spectroscopy, which was employed for the first time to reveal corrosion products in high-strength dual-phase steels, it was discovered that corrosion products increased with increasing mechanical strength due to an increasing martensite phase volume percentage. Polarization tests were carried out to support the electrochemical data reported by the Raman analysis. Similarly, an increase in the amount of martensite phase in the microstructure led to a decrease in the material’s corrosion resistance. Polarization experiments were carried out to support the electrochemical data interpreted by Raman analysis. In addition, an increase in the amount of martensite phase in the microstructure led to a decrease in the corrosion resistance of the material. In addition, information regarding the material’s electrochemical performance was obtained through Raman analysis. As shown by Raman, XRD, and polarization tests, the increase in corrosion products formed due to the increase in the amount of martensite led to a decrease in corrosion resistance.</p></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"57 ","pages":"Article 101796"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215098624001824/pdfft?md5=aaa35985e2086163e57a4bcd0ba971c9&pid=1-s2.0-S2215098624001824-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624001824","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There are some researches in the literature on the mechanical characteristics of dual-phase (DP) steels used in the automotive industry, but there is no comprehensive research on the corrosion behavior of these steels. In this work, the corrosion behavior of DP steels (DP440, DP590, DP980) exposed to two cycles of accelerated corrosion testing in accordance with Ford CETP 00.00-L-467 was observed. Raman and X-ray diffraction (XRD) techniques were used to classify the corrosion products, and the morphology of the samples was studied using a scanning electron microscope (SEM). Goethite and haematite were the primary chemical compounds determined. In high-mechanical strength DP steels, akaganeite was also identified in corroded specimens. The compounds formed due to corrosion were revealed by SEM images. In this work, according to the results of Raman spectroscopy, which was employed for the first time to reveal corrosion products in high-strength dual-phase steels, it was discovered that corrosion products increased with increasing mechanical strength due to an increasing martensite phase volume percentage. Polarization tests were carried out to support the electrochemical data reported by the Raman analysis. Similarly, an increase in the amount of martensite phase in the microstructure led to a decrease in the material’s corrosion resistance. Polarization experiments were carried out to support the electrochemical data interpreted by Raman analysis. In addition, an increase in the amount of martensite phase in the microstructure led to a decrease in the corrosion resistance of the material. In addition, information regarding the material’s electrochemical performance was obtained through Raman analysis. As shown by Raman, XRD, and polarization tests, the increase in corrosion products formed due to the increase in the amount of martensite led to a decrease in corrosion resistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速腐蚀试验下高强度双相钢中形成的腐蚀产物的特征
文献中对汽车工业中使用的双相钢(DP)的机械特性有一些研究,但对这些钢的腐蚀行为还没有全面的研究。在这项工作中,按照福特 CETP 00.00-L-467 标准,对暴露在两个周期加速腐蚀试验中的 DP 钢(DP440、DP590、DP980)的腐蚀行为进行了观察。使用拉曼和 X 射线衍射 (XRD) 技术对腐蚀产物进行了分类,并使用扫描电子显微镜 (SEM) 对样品的形态进行了研究。所测定的主要化学成分是高铁酸盐和血铁酸盐。在高机械强度 DP 钢的腐蚀试样中还发现了赤铁矿。扫描电镜图像显示了因腐蚀而形成的化合物。这项研究首次采用拉曼光谱来揭示高强度双相钢中的腐蚀产物,根据拉曼光谱的结果发现,由于马氏体相体积百分比的增加,腐蚀产物随着机械强度的增加而增加。为支持拉曼分析报告的电化学数据,还进行了极化测试。同样,微结构中马氏体相量的增加也导致材料耐腐蚀性的降低。为支持拉曼分析得出的电化学数据,还进行了极化实验。此外,微观结构中马氏体相量的增加导致材料耐腐蚀性的降低。此外,还通过拉曼分析获得了有关材料电化学性能的信息。拉曼、XRD 和极化测试表明,马氏体数量的增加导致腐蚀产物的增加,从而降低了耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
期刊最新文献
06 February 2023 Kahramanmaraş earthquakes (Mw = 7.8 and 7.6) field observations and preliminary assessment report A comparative study of thermal sprayed Al2O3-TiO2 coatings on PM AISI 316L LightYOLO: Lightweight model based on YOLOv8n for defect detection of ultrasonically welded wire terminations Prediction and optimization of electrical resistivity and unconfined compressive strength of cement-treated subgrade soil using I-optimal response surface methodology Chain extension of poly(butylene terephthalate)/organically modified clay nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1