Enhancing blasting efficiency: A smart predictive model for cost optimization and risk reduction

IF 10.2 2区 经济学 0 ENVIRONMENTAL STUDIES Resources Policy Pub Date : 2024-08-13 DOI:10.1016/j.resourpol.2024.105261
{"title":"Enhancing blasting efficiency: A smart predictive model for cost optimization and risk reduction","authors":"","doi":"10.1016/j.resourpol.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>Mineral extraction involves distinct stages, including drilling, blasting, loading, transporting, and processing minerals at a designated facility. The initial phase is drilling and blasting, crucial for controlled dimensions of crushed stone suitable for the processing plant. Incorrect blasting can lead to unsuitable stone grading and destructive outcomes like ground vibrations, stone projection, air blasts, and recoil. Predicting and optimizing blasting costs (<em>BC</em>) is essential to achieve desired particle size reduction while mitigating adverse blasting consequences. <em>BC</em> varies with rock hardness, blasting techniques, and patterns. This study presents a <em>BC</em> prediction model using data from 6 Iranian limestone mines, employing firefly (FF) and gray wolf optimization (GWO) algorithms. With 146 data points and parameters like hole diameter (<em>D</em>), ANFO (<em>AN</em>), sub-drilling (<em>J</em>), uniaxial compressive strength (<em>σ</em><sub><em>c</em></sub>), burden (<em>B</em>), hole number (<em>N</em>), umolite (<em>EM</em>),spacing (<em>S</em>), specific gravity (<em>γr</em>), stemming (<em>T</em>), hole length (<em>H</em>), rock hardness (<em>HA</em>), and electric detonators (<em>Det</em>), the data was split into 80% for model construction and 20% for validation. Using statistical indicators, the model showed good performance, offering engineers, researchers, and mining professionals high accuracy. The @RISK software conducted sensitivity analysis, revealing T parameter as the most influential input factor, where minor T changes significantly affected <em>BC</em>. Lastly, the @RISK software was employed to conduct a sensitivity analysis on the model's outputs. The analyses demonstrated that, among the input factors, the <em>T</em> parameter had the most pronounced effect on the model's output. Even small changes in the value of <em>T</em> led to considerable fluctuations in the predicted BC.</p></div>","PeriodicalId":20970,"journal":{"name":"Resources Policy","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301420724006287/pdfft?md5=8f8f620c201cd626f0253eb632d10032&pid=1-s2.0-S0301420724006287-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301420724006287","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Mineral extraction involves distinct stages, including drilling, blasting, loading, transporting, and processing minerals at a designated facility. The initial phase is drilling and blasting, crucial for controlled dimensions of crushed stone suitable for the processing plant. Incorrect blasting can lead to unsuitable stone grading and destructive outcomes like ground vibrations, stone projection, air blasts, and recoil. Predicting and optimizing blasting costs (BC) is essential to achieve desired particle size reduction while mitigating adverse blasting consequences. BC varies with rock hardness, blasting techniques, and patterns. This study presents a BC prediction model using data from 6 Iranian limestone mines, employing firefly (FF) and gray wolf optimization (GWO) algorithms. With 146 data points and parameters like hole diameter (D), ANFO (AN), sub-drilling (J), uniaxial compressive strength (σc), burden (B), hole number (N), umolite (EM),spacing (S), specific gravity (γr), stemming (T), hole length (H), rock hardness (HA), and electric detonators (Det), the data was split into 80% for model construction and 20% for validation. Using statistical indicators, the model showed good performance, offering engineers, researchers, and mining professionals high accuracy. The @RISK software conducted sensitivity analysis, revealing T parameter as the most influential input factor, where minor T changes significantly affected BC. Lastly, the @RISK software was employed to conduct a sensitivity analysis on the model's outputs. The analyses demonstrated that, among the input factors, the T parameter had the most pronounced effect on the model's output. Even small changes in the value of T led to considerable fluctuations in the predicted BC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高爆破效率:优化成本和降低风险的智能预测模型
矿物开采涉及不同阶段,包括钻探、爆破、装载、运输和在指定设施加工矿物。初始阶段是钻探和爆破,这对控制适合加工厂的碎石尺寸至关重要。不正确的爆破会导致不合适的石料分级和破坏性结果,如地面震动、石料抛射、气爆和反冲。预测和优化爆破成本(BC)对于实现理想的粒度减小效果,同时减轻爆破带来的不良后果至关重要。爆破成本随岩石硬度、爆破技术和爆破模式的不同而变化。本研究利用 6 个伊朗石灰石矿的数据,采用萤火虫(FF)和灰狼优化(GWO)算法,建立了一个爆破成本预测模型。该模型包含 146 个数据点和参数,如孔直径 (D)、ANFO (AN)、副钻孔 (J)、单轴抗压强度 (σc)、负荷 (B)、孔数 (N)、乌洛托品 (EM)、间距 (S)、比重 (γr)、钻杆 (T)、孔长 (H)、岩石硬度 (HA) 和电雷管 (Det),其中 80% 的数据用于构建模型,20% 的数据用于验证。利用统计指标,该模型显示出良好的性能,为工程师、研究人员和采矿专业人员提供了较高的准确性。@RISK 软件进行了敏感性分析,发现 T 参数是影响最大的输入因素,T 的微小变化都会对 BC 产生显著影响。最后,利用 @RISK 软件对模型的输出结果进行了敏感性分析。分析表明,在输入因素中,T 参数对模型输出的影响最为明显。即使是 T 值的微小变化,也会导致预测的 BC 值出现相当大的波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources Policy
Resources Policy ENVIRONMENTAL STUDIES-
CiteScore
13.40
自引率
23.50%
发文量
602
审稿时长
69 days
期刊介绍: Resources Policy is an international journal focused on the economics and policy aspects of mineral and fossil fuel extraction, production, and utilization. It targets individuals in academia, government, and industry. The journal seeks original research submissions analyzing public policy, economics, social science, geography, and finance in the fields of mining, non-fuel minerals, energy minerals, fossil fuels, and metals. Mineral economics topics covered include mineral market analysis, price analysis, project evaluation, mining and sustainable development, mineral resource rents, resource curse, mineral wealth and corruption, mineral taxation and regulation, strategic minerals and their supply, and the impact of mineral development on local communities and indigenous populations. The journal specifically excludes papers with agriculture, forestry, or fisheries as their primary focus.
期刊最新文献
Uncertainty and entrepreneurship in oil-rich developing countries: Does institution matter? Impact of natural resource rents on global trade dynamics in RCEP: Economic and geopolitical interdependencies Asymmetric relationship between crude oil price and remittance inflows in a small island economy: Evidence from non-linear ARDL approach Institutions as a determinant of FDI and the role of natural resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1