Multi-interfaced FeCoNi@C/carbon cloth composites for eliminating electromagnetic wave pollution

Changlong Du , Ying Zhang , Gengping Wan , Lihong Wu , Liang Li , Pengpeng Mou , Lianrui Li , Hualin Xiong , Guizhen Wang
{"title":"Multi-interfaced FeCoNi@C/carbon cloth composites for eliminating electromagnetic wave pollution","authors":"Changlong Du ,&nbsp;Ying Zhang ,&nbsp;Gengping Wan ,&nbsp;Lihong Wu ,&nbsp;Liang Li ,&nbsp;Pengpeng Mou ,&nbsp;Lianrui Li ,&nbsp;Hualin Xiong ,&nbsp;Guizhen Wang","doi":"10.1016/j.decarb.2024.100065","DOIUrl":null,"url":null,"abstract":"<div><p>To tackle the increasing electromagnetic pollution, new and efficient electromagnetic wave absorption (EWA) and shielding (EWS) materials are urgently needed. Multi-component synergism and complex microstructure design are effective measures to improve the EWA and EWS properties. However, how to implement the above designs still faces huge challenges. Herein, multi-interface carbon-coated FeCoNi nanoneedles grown on carbon cloth (FeCoNi@C/CC) were synthesized by a combination of hydrothermal process and chemical vapor deposition (CVD) technology with the concept of “green synthesis”. Using acetylene as the carbon source and atmosphere, the FeCoNi ternary hydroxide can be transformed into a multiple magnetic component (Fe<sub>3</sub>O<sub>4</sub>, Ni, and Co metals) by simple annealing. Simultaneously, a uniform carbon layer is formed on the surface, resulting in a composite system with a variety of heterogeneous interfaces and loss mechanisms. Additionally, the dielectric and magnetic loss capacities can be effectively adjusted by changing the temperature of CVD. The optimized FeCoNi@C/CC as filler exhibits remarkable EWA performance with a minimum reflection loss of −69.3 ​dB at a thickness of 1.82 ​mm and a maximum effective absorption bandwidth of 6.80 ​GHz. Moreover, the composites as an integrated component also show a fascinating electromagnetic interference shielding efficiency of 42.2 ​dB. This work provides a guide for the structural design of high-performance electromagnetic protection materials with multi-heterogeneous interfaces.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"6 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000313/pdfft?md5=a5c2abb003953c59bf9d965db86c6a06&pid=1-s2.0-S2949881324000313-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To tackle the increasing electromagnetic pollution, new and efficient electromagnetic wave absorption (EWA) and shielding (EWS) materials are urgently needed. Multi-component synergism and complex microstructure design are effective measures to improve the EWA and EWS properties. However, how to implement the above designs still faces huge challenges. Herein, multi-interface carbon-coated FeCoNi nanoneedles grown on carbon cloth (FeCoNi@C/CC) were synthesized by a combination of hydrothermal process and chemical vapor deposition (CVD) technology with the concept of “green synthesis”. Using acetylene as the carbon source and atmosphere, the FeCoNi ternary hydroxide can be transformed into a multiple magnetic component (Fe3O4, Ni, and Co metals) by simple annealing. Simultaneously, a uniform carbon layer is formed on the surface, resulting in a composite system with a variety of heterogeneous interfaces and loss mechanisms. Additionally, the dielectric and magnetic loss capacities can be effectively adjusted by changing the temperature of CVD. The optimized FeCoNi@C/CC as filler exhibits remarkable EWA performance with a minimum reflection loss of −69.3 ​dB at a thickness of 1.82 ​mm and a maximum effective absorption bandwidth of 6.80 ​GHz. Moreover, the composites as an integrated component also show a fascinating electromagnetic interference shielding efficiency of 42.2 ​dB. This work provides a guide for the structural design of high-performance electromagnetic protection materials with multi-heterogeneous interfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于消除电磁波污染的多界面 FeCoNi@C/碳布复合材料
为应对日益严重的电磁污染,迫切需要新型高效的电磁波吸收(EWA)和屏蔽(EWS)材料。多组分协同作用和复杂微结构设计是改善电磁波吸收和电磁波屏蔽性能的有效措施。然而,如何实现上述设计仍面临巨大挑战。本文以 "绿色合成 "为理念,结合水热法和化学气相沉积(CVD)技术,合成了生长在碳布上的多界面碳涂层铁钴镍纳米针(FeCoNi@C/CC)。以乙炔为碳源和气氛,通过简单的退火将铁钴镍三元氢氧化物转化为多种磁性成分(Fe3O4、镍和钴金属)。同时,表面会形成一层均匀的碳层,从而形成一个具有多种异质界面和损耗机制的复合系统。此外,还可以通过改变 CVD 温度来有效调节介电和磁损耗容量。经过优化的 FeCoNi@C/CC 填充物表现出卓越的 EWA 性能,在厚度为 1.82 mm 时的最小反射损耗为 -69.3 dB,最大有效吸收带宽为 6.80 GHz。此外,复合材料作为一个集成组件还显示出 42.2 dB 的惊人电磁干扰屏蔽效率。这项研究为具有多异质界面的高性能电磁防护材料的结构设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and perspectives toward wide-bandgap perovskite subcell in four-terminal all-perovskite tandem solar cells Eliminating active CO2 concentration in Carbon Capture and Storage (CCUS): Molten carbonate decarbonization through an insulation/diffusion membrane Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods Evaluating the economic and carbon emission reduction potential of fuel cell electric vehicle-to-grid Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1