Desalination of complex saline waters: sulfonated pentablock copolymer pervaporation membranes do not fail when exposed to scalants and surfactants

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2024-08-08 DOI:10.1016/j.memlet.2024.100080
Mariana Hernandez Molina , Yusi Li , W. Shane Walker , Rafael Verduzco , Mary Laura Lind , François Perreault
{"title":"Desalination of complex saline waters: sulfonated pentablock copolymer pervaporation membranes do not fail when exposed to scalants and surfactants","authors":"Mariana Hernandez Molina ,&nbsp;Yusi Li ,&nbsp;W. Shane Walker ,&nbsp;Rafael Verduzco ,&nbsp;Mary Laura Lind ,&nbsp;François Perreault","doi":"10.1016/j.memlet.2024.100080","DOIUrl":null,"url":null,"abstract":"<div><p>As a vapor pressure-driven process, pervaporation (PV) shares several of the advantages of membrane distillation (MD), such as the ability to tackle high salinity waters and the possibility of integrating low grade heat sources to reduce energy consumption. Membrane scaling and pore wetting remain strong limitations to the implementation of MD desalination. In comparison, dense, non-porous PV membranes are considered. In this study, PV membranes made from NEXAR<sup>TM</sup>, a sulfonated pentablock copolymer, were evaluated and compared to polytetrafluoroethylene (PTFE) MD membranes in a vacuum configuration. The membranes were tested using three solutions: 32 g L<sup>-1</sup> sodium chloride (NaCl), a brackish water (8.4 g L<sup>-1</sup>) of high scaling potential, and 5.5 g L<sup>-1</sup> NaCl with 1 mM sodium dodecyl sulfate. The NEXAR<sup>TM</sup> membrane achieved a permeance of 93.1±44.6 kg m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup> for the 32 g L<sup>-1</sup> brine, which was almost 20% higher than the PTFE MD membrane. This permeance decreased in the presence of foulants; however, in contrast with the MD membrane, where scaling and surfactants induced pore wetting, the salt rejection for the NEXAR<sup>TM</sup> PV membrane was constant at &gt;99% for all water types. These results emphasize the robustness of PV as a process to deal with challenging saline waters.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"4 2","pages":"Article 100080"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242122400014X/pdfft?md5=536fe3e31ef071d80e71b4c2f2148846&pid=1-s2.0-S277242122400014X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242122400014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a vapor pressure-driven process, pervaporation (PV) shares several of the advantages of membrane distillation (MD), such as the ability to tackle high salinity waters and the possibility of integrating low grade heat sources to reduce energy consumption. Membrane scaling and pore wetting remain strong limitations to the implementation of MD desalination. In comparison, dense, non-porous PV membranes are considered. In this study, PV membranes made from NEXARTM, a sulfonated pentablock copolymer, were evaluated and compared to polytetrafluoroethylene (PTFE) MD membranes in a vacuum configuration. The membranes were tested using three solutions: 32 g L-1 sodium chloride (NaCl), a brackish water (8.4 g L-1) of high scaling potential, and 5.5 g L-1 NaCl with 1 mM sodium dodecyl sulfate. The NEXARTM membrane achieved a permeance of 93.1±44.6 kg m-2 h-1 bar-1 for the 32 g L-1 brine, which was almost 20% higher than the PTFE MD membrane. This permeance decreased in the presence of foulants; however, in contrast with the MD membrane, where scaling and surfactants induced pore wetting, the salt rejection for the NEXARTM PV membrane was constant at >99% for all water types. These results emphasize the robustness of PV as a process to deal with challenging saline waters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂盐水的脱盐:磺化五嵌段共聚物渗透膜在暴露于脱盐剂和表面活性剂时不会失效
作为一种蒸汽压力驱动的工艺,渗透蒸发(PV)与膜蒸馏(MD)有一些共同的优点,例如能够处理高盐度水域,并有可能整合低品位热源以降低能耗。膜结垢和孔隙润湿仍然是实施 MD 海水淡化的主要限制因素。相比之下,我们考虑了致密、无孔的光伏膜。在这项研究中,对由五嵌段磺化共聚物 NEXARTM 制成的光伏膜进行了评估,并将其与真空配置下的聚四氟乙烯(PTFE)MD 膜进行了比较。使用三种溶液对膜进行了测试:32 g L-1 氯化钠 (NaCl)、具有高结垢潜能的苦咸水 (8.4 g L-1) 以及含有 1 mM 十二烷基硫酸钠的 5.5 g L-1 NaCl。NEXARTM 膜对 32 g L-1 盐水的渗透率为 93.1±44.6 kg m-2 h-1 bar-1,比 PTFE MD 膜高出近 20%。然而,与 MD 膜不同的是,NEXARTM PV 膜的盐分去除率在所有类型的水中都保持在 99%。这些结果强调了 PV 作为一种处理具有挑战性的盐水的工艺的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device Enhanced phosphate anion flux through single-ion, reverse-selective mixed-matrix cation exchange membrane Thermodynamic efficiency of membrane separation of dilute gas: Estimation for CO2 direct air capture application The solution-diffusion model: “Rumors of my death have been exaggerated” Incorporation of polyzwitterions in superabsorbent network membranes for enhanced saltwater absorption and retention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1