Topological scale framework for hypergraphs

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-12 DOI:10.1016/j.amc.2024.128989
H. Molina-Abril , M.J. Morón-Fernández , M. Benito-Marimón , F. Díaz-del-Río , P. Real
{"title":"Topological scale framework for hypergraphs","authors":"H. Molina-Abril ,&nbsp;M.J. Morón-Fernández ,&nbsp;M. Benito-Marimón ,&nbsp;F. Díaz-del-Río ,&nbsp;P. Real","doi":"10.1016/j.amc.2024.128989","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new computational topological framework for hypergraph analysis and recognition is developed. “Topology provides scale” is the principle at the core of this set of algebraic topological tools, whose fundamental notion is that of a scale-space topological model (<span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-model). The scale of this parameterized sequence of algebraic hypergraphs, all having the same Euler-Poincaré characteristic than the original hypergraph <em>G</em>, is provided by its relational topology in terms of evolution of incidence or adjacency connectivity maps. Its algebraic homological counterpart is again an <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-model, allowing the computation of new topological characteristics of <em>G</em>, which far exceeds current homological analytical techniques. Both scale-space algebraic dynamical systems are hypergraph isomorphic invariants. The hypergraph isomorphism problem is attacked here to demonstrate the power of the proposed framework, by proving the ability of <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-models to differentiate challenging cases that are difficult or even infeasible for state-of-the-art practical polynomial solvers. The processing, analysis, classification and learning power of the <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-model, at both combinatorial and algebraic levels, augurs positive prospects with respect to its application to physical, biological and social network analysis.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0096300324004508/pdfft?md5=0ff884e08d12813bf99247f527a8d8b0&pid=1-s2.0-S0096300324004508-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004508","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new computational topological framework for hypergraph analysis and recognition is developed. “Topology provides scale” is the principle at the core of this set of algebraic topological tools, whose fundamental notion is that of a scale-space topological model (s2-model). The scale of this parameterized sequence of algebraic hypergraphs, all having the same Euler-Poincaré characteristic than the original hypergraph G, is provided by its relational topology in terms of evolution of incidence or adjacency connectivity maps. Its algebraic homological counterpart is again an s2-model, allowing the computation of new topological characteristics of G, which far exceeds current homological analytical techniques. Both scale-space algebraic dynamical systems are hypergraph isomorphic invariants. The hypergraph isomorphism problem is attacked here to demonstrate the power of the proposed framework, by proving the ability of s2-models to differentiate challenging cases that are difficult or even infeasible for state-of-the-art practical polynomial solvers. The processing, analysis, classification and learning power of the s2-model, at both combinatorial and algebraic levels, augurs positive prospects with respect to its application to physical, biological and social network analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超图的拓扑尺度框架
本文为超图分析和识别开发了一个新的计算拓扑框架。"拓扑提供尺度 "是这套代数拓扑工具的核心原则,其基本概念是尺度空间拓扑模型(s2-model)。这个参数化的代数超图序列的尺度是由其关系拓扑提供的,即入射或邻接连通图的演化,所有这些超图都具有与原始超图 G 相同的欧拉-皮恩卡雷特征。其代数同调对应物也是一个 s2 模型,允许计算 G 的新拓扑特征,这远远超出了当前的同调分析技术。这两个尺度空间代数动力系统都是超图同构不变式。通过证明 s2 模型有能力区分对最先进的实用多项式求解器来说困难甚至不可行的挑战性情况,这里对超图同构问题进行了攻关,以展示所提框架的威力。s2 模型在组合和代数层面上的处理、分析、分类和学习能力,预示着它在物理、生物和社会网络分析方面的应用前景看好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1