Frequency response based identification of nonlinear oscillators

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-08-03 DOI:10.1016/j.jsv.2024.118651
{"title":"Frequency response based identification of nonlinear oscillators","authors":"","doi":"10.1016/j.jsv.2024.118651","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental modal analysis is commonly used to identify models for the vibratory behavior of structures. This is done by conducting a set of experiments to obtain the structure’s governing equations and information in the form of eigenfrequencies, mode shapes, and damping. However, linearity of the test structure is assumed within this identification procedure. Hence, as it stands, experimental modal analysis is not readily applicable to build models when nonlinearities are present through, for example, friction, (electro-) magnetic fields, or large deformations. To identify governing equations for such systems, a robust and systematic identification procedure is proposed in this article. The identification routine is formulated in the frequency domain, and a noise reduction scheme and a simplification routine are employed to obtain sparse and robust models. The identification procedure is implemented in an automated script (FrID), which is applied to forced response measurements stemming from structures with magnets, clamps, and bolted joints as well as systems with multiple active modes and internal resonances. The identified governing equations accurately fit the experimentally obtained frequency response measurements and can also be utilized to extrapolate the response for different forcing amplitudes. Moreover, nonlinear modes of the underlying conservative system can be computed from the identified governing equations.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24004139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental modal analysis is commonly used to identify models for the vibratory behavior of structures. This is done by conducting a set of experiments to obtain the structure’s governing equations and information in the form of eigenfrequencies, mode shapes, and damping. However, linearity of the test structure is assumed within this identification procedure. Hence, as it stands, experimental modal analysis is not readily applicable to build models when nonlinearities are present through, for example, friction, (electro-) magnetic fields, or large deformations. To identify governing equations for such systems, a robust and systematic identification procedure is proposed in this article. The identification routine is formulated in the frequency domain, and a noise reduction scheme and a simplification routine are employed to obtain sparse and robust models. The identification procedure is implemented in an automated script (FrID), which is applied to forced response measurements stemming from structures with magnets, clamps, and bolted joints as well as systems with multiple active modes and internal resonances. The identified governing equations accurately fit the experimentally obtained frequency response measurements and can also be utilized to extrapolate the response for different forcing amplitudes. Moreover, nonlinear modes of the underlying conservative system can be computed from the identified governing equations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频率响应的非线性振荡器识别
实验模态分析通常用于确定结构振动行为的模型。具体方法是进行一系列实验,以获得结构的控制方程以及特征频率、模态振型和阻尼等信息。然而,在这一识别过程中,测试结构被假定为线性结构。因此,在摩擦、(电)磁场或大变形等非线性因素存在的情况下,实验模态分析并不适用于建立模型。为了识别这类系统的支配方程,本文提出了一种稳健而系统的识别程序。该识别程序在频域中制定,并采用降噪方案和简化程序来获得稀疏和稳健的模型。识别程序在一个自动脚本(FrID)中实现,该脚本适用于带有磁铁、夹具和螺栓连接的结构以及具有多种主动模式和内部共振的系统的强迫响应测量。所确定的控制方程能准确拟合实验所获得的频率响应测量结果,还可用于推断不同强迫振幅下的响应。此外,还可以根据确定的控制方程计算出基本保守系统的非线性模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
A new contact force model for revolute joints considering elastic layer characteristics effects Robustness evaluation of acceleration-based early rub detection methodologies with real fluid-induced noise Extraction and characteristic analysis of the nonlinear acoustic impedance of circular orifice in the presence of bias flow A vibro-impact remote-controlled capsule in millimeter scale: Design, modeling, experimental validation and dynamic response Atypical second harmonic A0 mode Lamb waves in non-uniform plates for local incipient damage monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1